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Summary of this lesson
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“All models are wrong but some are useful.”

-George Box

Can we use rules as models?
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*This lesson refers to chapter 8 of the GIDS book
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Content of this lesson

− Propositional Rules

− Rule Learners

− Geometrical Rule Learners

− Heuristic Rule Learners
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Propositional Rules
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Propositional Rules
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− Rules consisting of atomic facts and their combinations using logical 

operators

Atomic facts

− Numeric attributes: e.g., <, >, =, etc.

− Nominal attributes: e.g., =, ∈ 𝑠𝑒𝑡 , etc.

− Ordinal attributes: e.g., <, >, =, ∈ 𝑠𝑒𝑡 , ∈ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , etc.
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𝐼𝐹 𝑥1 ≤ 10 𝐴𝑁𝐷 𝑥3 = 𝑟𝑒𝑑 𝑇𝐻𝐸𝑁 𝑐𝑙𝑎𝑠𝑠 𝐴

Antecedent

→ Indicating conditions to be fulfilled

Consequent

→ True when 

conditions are met



Extracting Rules from Decision Trees
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− Consider a decision tree:
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Temperature [C]

Humidity [%]

Temperature [C]

cold

comfortable

≤ 35

> 20

≤ 50 > 50

> 35

≤ 20

comfortable

unbearable



Extracting Rules from Decision Trees
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− Rules can be extracted from a decision tree
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Temperature [C]

Humidity [%]

Temperature [C]

cold

comfortable

≤ 35

> 20

≤ 50 > 50

> 35

≤ 20

comfortable

unbearable

− 𝑅𝑎 : IF 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 20 THEN class “cold”

− 𝑅𝑏 : IF 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 20 AND humidity ≤ 50 THEN class “comf”

− 𝑅𝑐 : IF 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∈ (20,35] AND humidity > 50 THEN class “comf”

− 𝑅𝑑 : IF 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 35 AND humidity > 50 THEN class “unbearable”



Rules from a decision tree are:

− Mutually exclusive (no overlap)

− Unordered

− Complete (covers the entire data)

Problems with rules from a decision tree:

− Instability (due to recursive nature of the 

trees)

− Redundancy (splitting constraints appear in 

multiple rules)

Extracting Rules from Decision Trees
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Ordered Rules from Decision Trees
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− Non-redundant and ordered rule set:

− Rules have to be examined in the order
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Temperature [C]

Humidity [%]

Temperature [C]

cold

comfortable

≤ 35

> 20

≤ 50 > 50

> 35

≤ 20

comfortable

unbearable

− 𝑅1 : IF 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 20 THEN class “cold”

− 𝑅2 : IF humidity ≤ 50 THEN class “comfortable”

− 𝑅3 : IF 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 35 THEN class “comfortable”

− 𝑅4 : class “unbearable”



Rule Learners
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Learning Propositional Rules
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Categorization of propositional rule learners:

− Supported attribute types

− Nominal only ➔ relatively small hypothesis space

− Numerical only ➔ geometrical rule learners

− Mixed attributes ➔ more complex heuristics needed

− Learning strategies

− Specializing

− Generalizing
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Learning Propositional Rules: Generalizing
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− Example

− Given a training instance (𝒙, 𝑘) with 𝒙 = 12, 3.5, 𝑟𝑒𝑑 , an initial special 

rule looks like:

𝐼𝐹 𝑥1 = 12 𝐴𝑁𝐷 𝑥2 = 3.5 𝐴𝑁𝐷 𝑥3 = 𝑟𝑒𝑑 𝑇𝐻𝐸𝑁 𝑐𝑙𝑎𝑠𝑠 𝑘

− With a second sample (𝒙, 𝑘) with 𝒙 = 12, . 3 3.5, 𝑏𝑙𝑢𝑒 , the rule is 

generalized as:

𝐼𝐹𝑥1 ∈ 12,12.3 𝐴𝑁𝐷 𝑥2 = 3.5 𝐴𝑁𝐷 𝑥3 ∈ 𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒 𝑇𝐻𝐸𝑁 𝑐𝑙𝑎𝑠𝑠 𝑘
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Learning Propositional Rules: Generalizing
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Two main options for generalization exist:

− Generalize existing rule to cover one more pattern

− Merge two existing rules

The resulting training algorithms generally are:

− Greedy

− Complete search of merge tree is infeasible

− Differ in

− The choice of rules / patterns to merge

− The used stopping criteria
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Learning Propositional Rules: Specializing
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Specialization follows the same principle

− Start with very general rules

IF true THEN class k

− Iteratively specialize the rule

Guide to Intelligent Data Science Second Edition, 2020



Finding a Set of Rules
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So far we only generalized/specialized one rule.

− Most real world data sets are too complex to be explained by one rule 

only.

− Many rule learning algorithms wrap the learning of one rule into an outer 

loop based on set covering strategy (sequential covering):

− attempts to build most important rules first

− iteratively adds smaller / less important rules
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Geometrical Rule Learners
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Geometrical Rule Learners
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− Limited to numerical attributes (of comparable magnitudes)

Goal:

− Find rectangular area(s) that are occupied only by patterns for one class

− Such areas represent a rule:

𝐼𝐹 𝑥1 ∈ 𝑎1, 𝑏1 ∧ ⋯∧⋯∧ 𝑥𝑛 ∈ 𝑎𝑛, 𝑏𝑛 𝑇𝐻𝐸𝑁 𝑐𝑙𝑎𝑠𝑠 𝑘

− Keep creating rules until no more useful rule can be found
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Example – Geometric Rule Learners
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Geometric Rule Learners
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To find a rule:

− Draw a random starting point

− Find a rectangular area around the point, with points belonging to the 

same class

When possible

− Find nearest neighbors of the same class

− Generalize rectangles to includes this point
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Geometric Rule: Specialized and Generalized
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Specialized Generalized



CN2 Rule Learning Algorithm
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− Prominent, early example of rule learning algorithm

− Set covering approach

− Greedy algorithm rule specialization

− Simple heuristic for most important rule selection
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BuildRuleSet
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Heuristic Rule Learners
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Heuristics for FindOneGoodRule
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How do we evaluate the accuracy A of a rule?

− Base assumption:

𝐴 𝐼𝐹 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑇𝐻𝐸𝑁 𝑐𝑙𝑎𝑠𝑠 𝑘 = 𝑝 𝑘/𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

− Estimating the probability using relative frequencies

𝑝 𝑘/𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 =
# 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

# 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑡𝑜𝑡𝑎𝑙

Guide to Intelligent Data Science Second Edition, 2020



Probability Estimates
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− Relative frequency of covered correctly:

𝑝 𝑘/𝑅 =
# 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

# 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑡𝑜𝑡𝑎𝑙

➔ Problems with small samples

− Laplace estimate

𝑝 𝑘/𝑅 =
# 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 1

# 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 + # 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

➔ Assumes uniform prior distribution of classes
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Probability Estimates
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− 𝑚-estimate:

𝑝 𝑘/𝑅 =
# 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑚 ∙ 𝑝(𝑘)

# 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 + 𝑚

− Where:

𝑝 𝑘 =
1

# 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑎𝑛𝑑 𝑚 = # 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

− Special case:

− Takes into account prior class probabilities

− Independent of number of classes

− 𝑚 is domain dependent (more noise, larger 𝑚) 
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FindOneGoodRule
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Limitations of Propositional Rules
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− Propositional rule learners cannot express rules such as:

𝐼𝐹 𝑥 𝑖𝑠 𝑓𝑎𝑡ℎ𝑒𝑟 𝑜𝑓 𝑦 𝐴𝑁𝐷 𝑦 𝑖𝑠 𝑓𝑒𝑚𝑎𝑙𝑒 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 𝑜𝑓 𝑥

− They would need to cover training examples for all possible (x,y) 

combinations

➔ For this, other types of rules are more appropriate
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Thank you
For any questions please contact: education@knime.com
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