
Project& Data 

Understanding



Summary of this lesson

„... the goal of the project understanding phase is to assess the main 

objective, the potential benefits, as well as the constraints, assumptions, 

and risks”

How do we identify the main objective of a project, and plan the 

approach?

*This lesson refers to chapter 3 and part of chapter 4 of the GIDS book
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Content of this lesson

− Some Classic Use Cases

− Project Understanding

− ETL: Extraction, Transformation Loading

− Data Understanding

− Describing your Data

− Finding Patterns

− Finding Models

− Finding Predictors

− A tiny bit of History

− One final word of Warning: Correlation vs. Causality
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Some Classic Use Cases
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Churn Prediction 

− Churn Prediction: will a customer quit the contract?

Model

CRM System
Data about your customer
▪ Demographics
▪ Behavior
▪ Revenues

▪ Churn Prediction
▪ Upselling Likelihood
▪ Product Propensity /NBO
▪ Campaign Management
▪ Customer Segmentation
▪ …
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Customer Segmentation

− Customer Segmentation: which groups of customers am I serving?

Model

CRM System
Data about your customer
▪ Demographics
▪ Behavior
▪ Revenues

▪ Churn Prediction
▪ Upselling Likelihood
▪ Product Propensity /NBO
▪ Campaign Management
▪ Customer Segmentation
▪ …
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Risk Assessment

− Risk Assessment: is this person going to repay the loan?

Model
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▪ High Risk
▪ Low Risk
▪ High Risk
▪ Very High Risk
▪ Very Low Risk
▪ Medium Risk
▪ …

Risk Prognosis

Guide to Intelligent Data Science Second Edition, 2020 7



Demand Prediction

− How many taxis do I need in NYC on Wednesday at noon?

− Or how many kW will be required tomorrow at 6am in London?

− Or how many customers will come tonight to my restaurant?

Model
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Recommendation Engines / Market Basket Analysis

− Recommendation Engines: People who bought this item were often 

interested in this other items.

Model

Recommendation

IF ➔
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Fraud Detection

− Fraud Detection: Is this transaction legitimate or is it a fraud?

Transactions
▪ Trx 1
▪ Trx 2
▪ Trx 3
▪ Trx 4
▪ Trx 5
▪ Trx 6
▪ …

Suspicious Transaction

Model
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Sentiment Analysis

− Sentiment Analysis: how can I know what people are thinking?
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Anomaly Detection

Predicting mechanical failure as late as possible but before it happens

Only some Spectral Time Series show the break down 

A1-SV3 [0, 100] 
Hz

A1-SV3 [500, 600] 
HzBreaking point

July 21, 2008

31 August 
2007

Training Set

Predictive 
Maintenance

via REST
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Compound Search

Are there other compounds having this 
substructure and being a dopaminergic antagonist?
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Project Understanding
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Determine the Project Objective

− What is the primary objective?

− What are the criteria for success?

− These are difficult to define

− The project owner & the analysis speak different languages

Problem source Project owner perspective Analyst perspective

Communication Project owner does not understand 
the technical terms of the analyst

Analyst does not understand the terms of 
the domain of the project owner

Lack of understanding Project owner was not sure what the 
analyst could do or achieve
Models of analyst were different from 
what the project owner envisioned

Analyst found it hard to understand how 
to help the project owner

Organization Requirements had to be adopted in 
later stages as problems with the data 
became evident

Project owner was an unpredictable 
group (not so concerned with the project)
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Cognitive maps

− Tool to sketch

− Beliefs

− Experiences

− Known factors

− How they influence 

each other

Guide to Intelligent Data Science Second Edition, 2020 16



Cognitive maps

− How often will a certain 

product be found in a 

basket?

− Directly influenced by 

factors around it

− E.g., affordability

− Indirectly influenced by 

other factors

− E.g., size of household

− Postive or negative 

correlation
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Clarifying the Primary Objectives

− Once the solution is identified

− Explore advantages & disadvantages

− Is the goal

− Precise enough?

− Actionable?

Objective Increase revenues (per campaign and/or per customer) in direct mailing 
campaigns by personalized offer and individual customer selection

Deliverable Software that automatically selects a specified number of customers from 
the database to whom the mailing shall be sent, runtime max. half-day for 
database of current size

Success criteria Improve order rate by 5% or total revenues by 5%, measured within 4 
weeks after mailing was sent, compared to rate of last 3 mailings
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Assess the Situation

− Will this be a successful data analysis project?

− Examine the following:

− Requirements and constraints
− Model requirements (e.g., explanatory model)

− Ethical, political, and legal issues (e.g., must exclude gender, race, and/or age)

− Technical constrains

− Assumptions
− Representativeness (the sample represents the whole population)

− Informativeness (influencing factors should be included in the model)

− Good data quality

− Presence of external factors
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Determine Analysis Goals

Select models and techniques with the following properties

− Interpretability

− The model can be understood / interpreted

− Reproducibility / stability

− Similar model performance every time the analysis is carried out

− Model flexibility / adequacy

− The model can adapt to more complicated situations

− Runtime

− Strict runtime requirements may limit computationally intensive approaches

− Interestingness / use of expert knowledge

− Experts may already know the finings from the analysis
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ETL: Extraction, 

Transformation, 

Loading

Guide to Intelligent Data Science Second Edition, 2020 21



ETL

Getting the data in not always easy:

− Different resources: flat files, different databases, excel spreadsheets, ...

− Integration is cumbersome: Missing/not unique IDs, wrong entries, ...

− Sometimes also privacy concerns (not all data in one location)

Data needs to be transformed:

− Type conversions

− Missing value correction/clean up/imputation

− Generation of new values (e.g. convert year of birth into age)
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ETL

− Three files: 

− customers, 

− products, 

− shopping baskets.

− Can we load these file and create a new attribute “age”?

− Can we find out:

− how often each customer went shopping 

− how much (s)he bought together (and on average)
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Data Loading and Preprocessing

− Database issues

− More details regarding pre-processing later:

− Normalization

− Binning

− Feature (and Data!) Reduction

− ...

The 80% Rule
Over 80% of data analysts’ time is spent on loading and cleaning data.
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Data Understanding
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Data understanding

− Goal of the Data Understanding phase

− Gain general insights about the data that will potentially be helpful for the 

further steps in the data analysis process

− Reasons

− Never trust any data as long as you have not carried out some simple 

plausibility checks. 

− Results

− At the end of the data understanding phase, we know much better whether 

the assumptions we made during the project understanding phase concerning 

representativeness, informativeness, data quality, and the presence or 

absence of external factors are justified
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Attribute Understanding

− Data can usually be described in 

terms of table or matrices

− Sometimes data are spread among 

different table that need to be 

joined

No Sex Age Blood pr. Height Drug

1 male 20 normal 175,0 A

2 female 73 normal 172,2 B

3 female 37 high 163,8 A

4 male 33 low 171,4 B

5 female 48 high 165,9 A

6 male 29 normal 182,3 A

7 female 52 normal 167,2 B

8 male 42 low 177,2 B

9 male 61 normal 168,4 B

10 female 30 normal 174,9 A

Instances, records, 

data objects, entries…

Attributes, features, 

variables…
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Attribute Understanding

− Attributes differ for their scale type, 

according to the type of values that 

they can assume

− Three scale types:

• Categorical / Nominal

• Ordinal

• Numeric

No Sex Age Blood pr. Height Drug

1 male 20 normal 175,0 A

2 female 73 normal 172,2 B

3 female 37 high 163,8 A

4 male 33 low 171,4 B

5 female 48 high 165,9 A

6 male 29 normal 182,3 A

7 female 52 normal 167,2 B

8 male 42 low 177,2 B

9 male 61 normal 168,4 B

10 female 30 normal 174,9 A

NumericCategorical Ordinal

CategoricalNumeric
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Categorical Attributes

− Categorical (or Nominal) attributes have 

a finite set of possible values

− Granularity must be taken into account

− Hierarchical structure of the categories

− e.g. shallow subdivision: food, non-food, drinks…

− further subdivision for drinks: water, beer, wine…

− Which level of granularity is appropriate?

− Dynamic Domain

− Some attributes have a fixed domain (e.g. 

months)

− For other attributes the domain can change over 

time (e.g. the products in a catalogue)

− Those attributes must be identified and handled

No Sex Age Blood pr. Height Drug

1 male 20 normal 175,0 A

2 female 73 normal 172,2 B

3 female 37 high 163,8 A

4 male 33 low 171,4 B

5 female 48 high 165,9 A

6 male 29 normal 182,3 A

7 female 52 normal 167,2 B

8 male 42 low 177,2 B

9 male 61 normal 168,4 B

10 female 30 normal 174,9 A

Categorical

Categorical
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Ordinal Attributes

− Ordinal attributes have an additional 

linear ordering offered by the domain

− The ordering does not provide the 

distance between two object

− e.g. for an attribute containing university 

degrees, we can state that a Ph.D is an 

higher degree than a M.Sc. and that this is 

higher than a B.Sc.. 

No Sex Age Blood pr. Height Drug

1 male 20 normal 175,0 A

2 female 73 normal 172,2 B

3 female 37 high 163,8 A

4 male 33 low 171,4 B

5 female 48 high 165,9 A

6 male 29 normal 182,3 A

7 female 52 normal 167,2 B

8 male 42 low 177,2 B

9 male 61 normal 168,4 B

10 female 30 normal 174,9 A

Ordinal
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Attribute Understanding

− The domain of numerical attributes are 

numbers. They can be

− Discrete

− e.g. age, count…

− Represented as integer values

− Continuous

− e.g. height, weight, distance…

− Represented as real values

− Precision (rounding) has to be handled

− The scale of numeric attributes can be:

− Interval e.g. date

− Ratio Scale e.g. distance, with a canonical 

zero value

− Absolute Scale e.g. counting

No Sex Age Blood pr. Height Drug

1 male 20 normal 175,0 A

2 female 73 normal 172,2 B

3 female 37 high 163,8 A

4 male 33 low 171,4 B

5 female 48 high 165,9 A

6 male 29 normal 182,3 A

7 female 52 normal 167,2 B

8 male 42 low 177,2 B

9 male 61 normal 168,4 B

10 female 30 normal 174,9 A

Numeric continuous

Numeric discrete
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Data Quality

− Data quality refers to how well the data fit their intended use

− There are various data quality dimensions

• Accuracy

• Completeness

• Unbalanced Data

• Timeliness

Garbage in, garbage out
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Accuracy

Syntactic

− The value might not be correct but it 

belongs at least to the domain of the 

corresponding attribute

− Easy to spot: verify values lying in 

the domain

Semantic

− The value might be in the domain of 

the corresponding attribute, but it is 

not correct

− Hard or impossible to spot: double 

check with other sources or check 

“business rules”

Accuracy is defined as the closeness between the value in the data and 

the true value.

e.g. “fmale” for the attribute Gender 

and “-15” for the attribute Weight 

violate the syntactic accuracy

e.g. “2090” for the attribute 

YearOfBirth is (at least at the moment) 

surely incorrect, therefore violates the 

semantic accuracy
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Completeness

− Completeness with respect to attributes

− All the attributes have a value associated

− i.e. Missing Values (coming soon in next lessons)

− Missing values might not always be explicitly marked

− Completeness with respect to records

− The data set contains the necessary information required for the analysis

− Some rows might have been lost for various reasons (e.g. during DB 

migration)

− Sometimes data about a certain situation simply does not exist (e.g. data 

about a failure that has never –yet- occurred)

− It is hard to obtain a reasonably wide dataset containing all the possible 

combinations of data
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Unbalanced Data and Timeliness

Unbalanced Data

− Data regarding a certain situation might be underrepresented 

− E.g. machine quality control: parts produced with flaws are – hopefully –

lower than the correct ones, therefore the corresponding data will be 

way less

Timeliness

− Available data are too old to provide up to date information

− Often a problem in dynamically changing domains, where older data 

might indicate trends that have vanished
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Describing your Data
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Looking at the Data

Familiarize yourself with the data

− Identify trends

− strange patterns

− outliers

− ...

Types of views

− Basic Statistics

− 1D: Histograms

− 2D: Scatterplots, Scatter Matrix, Multi Dimensional Scaling

− 3D Scatterplots

− 3D: Parallel Coordinates
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Visual Inspection: Example

− Let’s look at our data

− Can we find some connections between age and shopping cart size?

− Anything else that looks a bit odd? (...the age distribution, maybe?)

− Visualizations are a good way for first sanity checks

− Interactivity on a plot or among plots is very helpful
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Simple Descriptors

− Simple statistical descriptors, such as:

− range

− mean/median

− standard deviation

− nominal values and their frequencies

− ...

− can help to sanity check your data (and find dependencies that 

otherwise might surprise you quite a bit afterwards!)

− Can we look at the range and other simple 1D descriptors?

− How about 2D correlations between attributes?
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Finding Patterns
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Finding Patterns

− Finding (significant?) patterns in data may reveal interesting 

connections:

− Global patterns: groups of customers or products

− Clusters

− Local patterns: connections between products, sub populations of 

customers (recommendation engines!)

− Subgroups

− Association Rules
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Example

− Can we find groups of similar customers?

− (and what does similarity mean, anyway?)

− Similarity

− Finding the right similarity metric is an art.

− (and what is a cluster anyway?)

− Distance based methods in high dimensions offer all sorts of interesting 

surprises...
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KNIME workflow

− Screenshot of KNIME workflow with clustering
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Finding Models
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Finding Models

− Deriving models that describe (aspects of) the data:

− Rules

− Trees

− Typical (or really odd!) examples

− ...

− Models attempt to describe what is going on in the system that 

“generated” the data.

− Example:

− Can we find a decision tree describing why certain customers buy so much?
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KNIME workflow

− Screenshot of KNIME workflow with decision tree
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Finding Predictors
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Finding Predictors

− Sometimes we want to find a model which we can use to later predict 

the target variable(s):

− Predict future shopping behaviour

− Predict credit risk

− Predict activity of a chemical compound

− Predict tomorrow’s weather, stock market, ...

− And we may not care too much about actually understanding the model 

itself.
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Brute Force Predictors

Brute Force Predictors

Very simple: look at your closest neighbour
− Case based reasoning works that way

− Depends heavily on your distance function

− Does not work well with outliers/noise

Slightly better: look at a few of your neighbors
− K Nearest Neighbor

− Works pretty well

− But pretty expensive to compute...

Even better: look at all neighbors, but weight them
− Weighted K Nearest Neighbor

− Works even better

− Even more expensive...
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Other Predictors

− Decision Trees, Rules, ... (all of our models!)

− (Naïve) Bayes Classifiers

− Regression

− (Artificial) Neural Networks

− Support Vector Machines (Kernel Methods)
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Finding Predictors: Example

Can we predict the size of shopping-cart?

− Brute force: look at a (few) neighbor(s).

− Use our decision tree?...

What’s wrong with that approach?
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KNIME workflow

− Screenshot of KNIME workflow with a neural network
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Data Mining Systems

What kind of systems do we need?

− easy to use (also by non Data Mining Expert!)

− simple knowledge representation (understandable!)

− mergers of disciplines (machine learning, stats, databases, ...)

− (partial) automation of feedback (“Intelligent” Data Science!)

− quick turn-around (interactive!)
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A tiny bit of History
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History: Classical Data Analysis

− History: Classical Data Analysis

− Small, usually manually recorded data sets

− Calculation of correlation measures and statistical significance 

measures.

− Calculations done with minimal to no compute support.

− Calculations later supported by basic calculation equipment
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History: Table based Analysis

− History: Table based Analysis

− Data points are stored in tables, often recorded in spread sheets

− Simple analyses performed automatically on demand (calculate mean, 

add columns, ...)

− Visicalc, ...
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Today: Large Scale Mining

− Today: Large Scale Mining

− Data in various formats and from various sources

− manual analysis impossible

− efficient compute support essential

− analysis still question driven:

− find patterns of this type

− check correlations

− build model to predict this behaviour
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Terminology
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One final Word of Warning

Correlation ⇏ Causality
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Correlation vs. Causality

Hypothesis:     Storks bring babies

And the data?

Guide to Intelligent Data Science Second Edition, 2020 60



Correlation vs. Causality

Hypothesis:     Storks bring babies

And the data?

Correlation is significant and positive!
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Hypothesis:     Storks bring babies

And the data?

Correlation is significant and positive!

Correlation vs. Causality
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Simpson‘s Paradox

− Should I start smoking to live longer?

− Mortality Rate Study

Died Survived Total Rate

Smokers 139 443 582 23.9%

Non Smokers 230 502 732 31.4%

Total 369 945 1314 28.1%

Credit: http://www.significancemagazine.org/details/webexclusive/2671151/
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Simpson‘s Paradox

Mortality Rates by Age Distribution of Age by 

Smoking Status

Credit: http://www.significancemagazine.org/details/webexclusive/2671151/

Simpsons-Paradox-A-Cautionary-Tale-in-Advanced-Analytics.html  
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Simpson‘s Paradox

. . . does the overall tax rate go up, while all individual rates go down?

Tax Rate % of total income

Adjusted gross income 1974 1978 1974 1987

Under $5000 0.054 0.035 4.73 1.60

$5000 - $9999 0.093 0.072 16.63 9.89

$10000 - $14999 0.111 0.100 21.89 13.83

$15000 - $99999 0.160 0.159 53.40 69.62

$100000 and more 0.384 0.383 3.34 5.06

Total 0.141 0.152 100 100

Table Credit: Counting for Something by William S. Peters

Guide to Intelligent Data Science Second Edition, 2020 65



Correlation vs. Causality

and what about Chocolate and Nobel prices?

Image Credit: http://www.nejm.org/doi/full/10.1056/NEJMon1211064
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Do not trust your numbers!

Tymans’s Law

Any statistic that appears interesting is almost certainly a mistake.
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Summary

− The different kind of projects
− Common Use Cases

− Search strategies

− The steps in project 

understanding

− The different kinds of datasets

− The steps in data understanding
− ETL

− Describing your Data

− Finding Patterns

− Finding Models

− Finding Predictors

− A tiny bit of History

− Correlation vs. Causality

Guide to Intelligent Data Science Second Edition, 2020 68



Guide to Intelligent Data Science Second Edition, 2020

Thank you
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