Texts in Computer Science

Project& Data Understanding

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Springer

"... the goal of the project understanding phase is to assess the main objective, the potential benefits, as well as the constraints, assumptions, and risks"

How do we identify the main objective of a project, and plan the approach?

*This lesson refers to chapter 3 and part of chapter 4 of the GIDS book

- Some Classic Use Cases
- Project Understanding
- ETL: Extraction, Transformation Loading
- Data Understanding
- Describing your Data
- Finding Patterns
- Finding Models
- Finding Predictors
- A tiny bit of History
- One final word of Warning: Correlation vs. Causality

Some Classic Use Cases

- Churn Prediction: will a customer quit the contract?

CRM System Data about your customer

- Demographics
- Behavior
- Revenues

- Churn Prediction
- Upselling Likelihood
- Product Propensity /NBO
- Campaign Management
- Customer Segmentation

· ...

Model

– Customer Segmentation: which groups of customers am I serving?

CRM System Data about your customer

- Demographics
- Behavior
- Revenues

Churn Prediction

...

- Upselling Likelihood
- Product Propensity /NBO
- Campaign Management
- Customer Segmentation

Model

– Risk Assessment: is this person going to repay the loan?

Customer History

Risk Prognosis

- How many taxis do I need in NYC on Wednesday at noon?
- Or how many kW will be required tomorrow at 6am in London?
- Or how many customers will come tonight to my restaurant?

 Recommendation Engines: People who bought this item were often interested in this other items.

- Fraud Detection: Is this transaction legitimate or is it a fraud?

– Sentiment Analysis: how can I know what people are thinking?

Predicting mechanical failure as late as possible but before it happens

via REST

Only some Spectral Time Series show the break down

Project Understanding

- What is the primary objective?
- What are the criteria for success?
- These are difficult to define
 - The project owner & the analysis *speak different languages*

Problem source	Project owner perspective	Analyst perspective
Communication	Project owner does not understand the technical terms of the analyst	Analyst does not understand the terms of the domain of the project owner
Lack of understanding	Project owner was not sure what the analyst could do or achieve Models of analyst were different from what the project owner envisioned	Analyst found it hard to understand how to help the project owner
Organization	Requirements had to be adopted in later stages as problems with the data became evident	Project owner was an unpredictable group (not so concerned with the project)

Cognitive maps

- Tool to sketch
 - Beliefs
 - Experiences
 - Known factors
 - How they influence each other

Cognitive maps

- How often will a certain product be found in a basket?
 - Directly influenced by factors around it
 - E.g., affordability
 - Indirectly influenced by other factors
 - E.g., size of household
 - Postive or negative correlation

Clarifying the Primary Objectives

- Once the solution is identified
 - Explore advantages & disadvantages
- Is the goal
 - Precise enough?
 - Actionable?

Objective	Increase revenues (per campaign and/or per customer) in direct mailing campaigns by personalized offer and individual customer selection
Deliverable	Software that automatically selects a specified number of customers from the database to whom the mailing shall be sent, runtime max. half-day for database of current size
Success criteria	Improve order rate by 5% or total revenues by 5%, measured within 4 weeks after mailing was sent, compared to rate of last 3 mailings

- Will this be a successful data analysis project?
- Examine the following:

Requirements and constraints

- Model requirements (e.g., explanatory model)
- Ethical, political, and legal issues (e.g., must exclude gender, race, and/or age)
- Technical constrains

Assumptions

- Representativeness (the sample represents the whole population)
- Informativeness (influencing factors should be included in the model)
- Good data quality
- Presence of external factors

Select models and techniques with the following properties

- Interpretability
 - The model can be understood / interpreted
- Reproducibility / stability
 - Similar model performance every time the analysis is carried out

Model flexibility / adequacy

- The model can adapt to more complicated situations

– Runtime

- Strict runtime requirements may limit computationally intensive approaches

Interestingness / use of expert knowledge

Experts may already know the finings from the analysis

ETL: Extraction, Transformation, Loading

Getting the data in not always easy:

- Different resources: flat files, different databases, excel spreadsheets, ...
- Integration is cumbersome: Missing/not unique IDs, wrong entries, ...
- Sometimes also privacy concerns (not all data in one location)

Data needs to be transformed:

- Type conversions
- Missing value correction/clean up/imputation
- Generation of new values (e.g. convert year of birth into age)

– Three files:

- customers,
- products,
- shopping baskets.
- Can we load these file and create a new attribute "age"?

– Can we find out:

- how often each customer went shopping
- how much (s)he bought together (and on average)

Database issues

- More details regarding pre-processing later:
 - Normalization
 - Binning

....

- Feature (and Data!) Reduction

The 80% Rule Over 80% of data analysts' time is spent on loading and cleaning data.

Data Understanding

Goal of the Data Understanding phase

 Gain general insights about the data that will potentially be helpful for the further steps in the data analysis process

– Reasons

 Never trust any data as long as you have not carried out some simple plausibility checks.

– Results

 At the end of the data understanding phase, we know much better whether the assumptions we made during the project understanding phase concerning representativeness, informativeness, data quality, and the presence or absence of external factors are justified

Attribute Understanding

No	Sex	Age	Blood pr.	Height	Drug
1	male	20	normal	175,0	А
2	female	73	normal	172,2	В
3	female	37	high	163,8	А
4	male	33	low	171,4	В
5	female	48	high	165,9	А
6	male	29	normal	182,3	А
7	female	52	normal	167,2	В
8	male	42	low	177,2	В
9	male	61	normal	168,4	В
10	female	30	normal	174,9	А

Attributes, features, variables...

Instances, records, data objects, entries...

- Data can usually be described in terms of table or matrices
- Sometimes data are spread among different table that need to be joined

	Categorical		Ordinal	Nume	ric
No	Sex	Age	Blood pr.	Height	Drug
1	male	20	normal	175,0	А
2	female	73	normal	172,2	В
3	female	37	high	163,8	А
4	male	33	low	171,4	В
5	female	48	high	165,9	А
6	male	29	normal	182,3	А
7	female	52	normal	167,2	В
8	male	42	low	177,2	В
9	male	61	normal	168,4	В
10	female	30	normal	174,9	А
Nume			ric		Categori

- Attributes differ for their scale type, according to the type of values that they can assume
- Three scale types:
 - Categorical / Nominal
 - Ordinal
 - Numeric

. .

_

	Categorical								
	Sex	Age			Drug				
1	male	20		175,0	А				
2	female			172,2	В				
	female			163,8	А				
	male			171,4	В				
	female			165,9	А				
	male	29		182,3	А				
	female			167,2	В				
	male			177,2	В				
	male	61		168,4	В				
10	female			174,9	А				
					\sim				

- Categorical (or Nominal) attributes have a finite set of possible values
- Granularity must be taken into account
 - Hierarchical structure of the categories
 - e.g. shallow subdivision: food, non-food, drinks...
 - further subdivision for drinks: water, beer, wine...
 - Which level of granularity is appropriate?

Dynamic Domain

Categorical

- Some attributes have a fixed domain (e.g. months)
- For other attributes the domain can change over time (e.g. the products in a catalogue)
- Those attributes must be identified and handled

		Ordinal		
		Blood pr.		
1	20	normal	175,0	
2		normal	172,2	
		high	163,8	
		low	171,4	
		high	165,9	
	29	normal	182,3	
		normal	167,2	
		low	177,2	
	61	normal	168,4	
10		normal	174,9	

- Ordinal attributes have an additional linear ordering offered by the domain
- The ordering does not provide the distance between two object
- e.g. for an attribute containing university degrees, we can state that a *Ph.D* is an higher degree than a *M.Sc.* and that this is higher than a *B.Sc.*.

	Numeric continuous							
		Age		Height				
1		20		175,0				
2		73		172,2				
		37		163,8				
		33		171,4				
		48		165,9				
		29		182,3				
		52		167,2				
		42		177,2				
		61		168,4				
10		30		174,9				

- The domain of numerical attributes are numbers. They can be
- Discrete
 - e.g. age, count...
 - Represented as integer values

– Continuous

- e.g. height, weight, distance...
- Represented as real values
- Precision (rounding) has to be handled
- The scale of numeric attributes can be:
 - Interval e.g. date
 - Ratio Scale e.g. distance, with a canonical zero value
 - Absolute Scale e.g. counting

- Data quality refers to how well the data fit their intended use
- There are various data quality dimensions
 - Accuracy
 - Completeness
 - Unbalanced Data
 - Timeliness

Accuracy is defined as the closeness between the value in the data and the true value.

Syntactic

- The value might not be correct but it belongs at least to the domain of the corresponding attribute
- Easy to spot: verify values lying in the domain

e.g. "fmale" for the attribute Gender and "-15" for the attribute Weight violate the syntactic accuracy

Semantic

- The value might be in the domain of the corresponding attribute, but it is not correct
- Hard or impossible to spot: double check with other sources or check "business rules"

e.g. "2090" for the attribute YearOfBirth is (at least at the moment) surely incorrect, therefore violates the semantic accuracy

Completeness with respect to attributes

- All the attributes have a value associated
- i.e. Missing Values (coming soon in next lessons)
- Missing values might not always be explicitly marked
- Completeness with respect to records
 - The data set contains the necessary information required for the analysis
 - Some rows might have been lost for various reasons (e.g. during DB migration)
 - Sometimes data about a certain situation simply does not exist (e.g. data about a failure that has never –yet- occurred)
 - It is hard to obtain a reasonably wide dataset containing all the possible combinations of data

Unbalanced Data

- Data regarding a certain situation might be underrepresented
- E.g. machine quality control: parts produced with flaws are hopefully lower than the correct ones, therefore the corresponding data will be way less

Timeliness

- Available data are too old to provide up to date information
- Often a problem in dynamically changing domains, where older data might indicate trends that have vanished

Describing your Data

Familiarize yourself with the data

- Identify trends
- strange patterns
- outliers
- ...

Types of views

- Basic Statistics
- 1D: Histograms
- 2D: Scatterplots, Scatter Matrix, Multi Dimensional Scaling
- 3D Scatterplots
- 3D: Parallel Coordinates

- Let's look at our data
- Can we find some connections between age and shopping cart size?
- Anything else that looks a bit odd? (...the age distribution, maybe?)
- Visualizations are a good way for first sanity checks
- Interactivity on a plot or among plots is very helpful

- Simple statistical descriptors, such as:
 - range

. . .

- mean/median
- standard deviation
- nominal values and their frequencies
- can help to sanity check your data (and find dependencies that otherwise might surprise you quite a bit afterwards!)
- Can we look at the range and other simple 1D descriptors?
- How about 2D correlations between attributes?

Finding Patterns

- Finding (significant?) patterns in data may reveal interesting connections:
- Global patterns: groups of customers or products

- Clusters

- Local patterns: connections between products, sub populations of customers (recommendation engines!)
 - Subgroups
 - Association Rules

- Can we find groups of similar customers?
- (and what does similarity mean, anyway?)

- Similarity
- Finding the right similarity metric is an art.
- (and what is a cluster anyway?)
- Distance based methods in high dimensions offer all sorts of interesting surprises...

Screenshot of KNIME workflow with clustering

Finding Models

- Deriving models that describe (aspects of) the data:
 - Rules
 - Trees

. . .

- Typical (or really odd!) examples
- Models attempt to describe what is going on in the system that "generated" the data.
- Example:
 - Can we find a decision tree describing why certain customers buy so much?

Screenshot of KNIME workflow with decision tree

Finding Predictors

- Sometimes we want to find a model which we can use to later predict the target variable(s):
- Predict future shopping behaviour
- Predict credit risk
- Predict activity of a chemical compound
- Predict tomorrow's weather, stock market, ...
- And we may not care too much about actually understanding the model itself.

Brute Force Predictors

Very simple: look at your closest neighbour

- Case based reasoning works that way
- Depends heavily on your distance function
- Does not work well with outliers/noise

Slightly better: look at a few of your neighbors

- K Nearest Neighbor
- Works pretty well
- But pretty expensive to compute...

Even better: look at all neighbors, but weight them

- Weighted K Nearest Neighbor
- Works even better
- Even more expensive...

- Decision Trees, Rules, ... (all of our models!)
- (Naïve) Bayes Classifiers
- Regression
- (Artificial) Neural Networks
- Support Vector Machines (Kernel Methods)

Can we predict the size of shopping-cart?

- Brute force: look at a (few) neighbor(s).
- Use our decision tree?...

What's wrong with that approach?

Screenshot of KNIME workflow with a neural network

eras Input Layer	Keras Dens	e Layer Keras D	ense Layer					
		×	*		Kara Natarak			
					Learner			
input layer 4 units	hidden 8 ur ReLu act	layer out hits function softmax	tput layer 3 unit act. function					
Classification o trained with B	f the iris data set P	using an ANN 4	1-8-3	Normalizer	RMSProp 200 epochs			
Classification o trained with B	f the iris data set P	using an ANN 4	I-8-3	Normalizer	RMSProp 200 epochs	Keras Network		
Classification o trained with B Table Reader	f the iris data set P Rule Engine	using an ANN 4 Create Collection Column	Partitioning	Normalizer	RMSProp 200 epochs Normalizer (Apply)	Keras Network Executor	Rule Engine	Scorer
Classification o trained with B Table Reader	f the iris data set	using an ANN 4 Create Collection Column	Partitioning	Normalizer	RMSProp 200 epochs Normalizer (Apply)	Keras Network Executor	Rule Engine	Scorer
Classification o trained with B Table Reader	f the iris data set	using an ANN 4	Partitioning	Normalizer	RMSProp 200 epochs Normalizer (Apply)	Keras Network Executor	Rule Engine	Scorer

What kind of systems do we need?

- easy to use (also by non Data Mining Expert!)
- simple knowledge representation (understandable!)
- mergers of disciplines (machine learning, stats, databases, ...)
- (partial) automation of feedback ("Intelligent" Data Science!)
- quick turn-around (interactive!)

A tiny bit of History

- History: Classical Data Analysis
- Small, usually manually recorded data sets
- Calculation of correlation measures and statistical significance measures.
- Calculations done with minimal to no compute support.
- Calculations later supported by basic calculation equipment

- History: Table based Analysis
- Data points are stored in tables, often recorded in spread sheets
- Simple analyses performed automatically on demand (calculate mean, add columns, ...)
- Visicalc, ...

– Today: Large Scale Mining

- Data in various formats and from various sources
- manual analysis impossible
- efficient compute support essential
- analysis still question driven:
 - find patterns of this type
 - check correlations
 - build model to predict this behaviour

Terminology

One final Word of Warning Correlation ⇒ Causality

Hypothesis: Storks bring babies And the data?

Hypothesis: Storks bring babies And the data?

Correlation is significant and positive!

Guide to Intelligent Data Science Second Edition, 2020

Hypothesis: Storks bring babies And the data?

Correlation is significant and positive!

- Should I start smoking to live longer?
- Mortality Rate Study

	Died	Survived	Total	Rate
Smokers	139	443	582	23.9%
Non Smokers	230	502	732	31.4%
Total	369	945	1314	28.1%

Credit: http://www.significancemagazine.org/details/webexclusive/2671151/

Mortality Rates by Age

Distribution of Age by Smoking Status

Credit: http://www.significancemagazine.org/details/webexclusive/2671151/

Simpsons-Paradox-A-Cautionary-Tale-in-Advanced-Analytics.html

	Tax F	late	% of total	income
Adjusted gross income	1974	1978	1974	1987
Under \$5000	0.054	0.035	4.73	1.60
\$5000 - \$9999	0.093	0.072	16.63	9.89
\$10000 - \$14999	0.111	0.100	21.89	13.83
\$15000 - \$999999	0.160	0.159	53.40	69.62
\$100000 and more	0.384	0.383	3.34	5.06
Total	0.141	0.152	100	100

Table Credit: Counting for Something by William S. Peters

... does the overall tax rate go up, while all individual rates go down?

and what about Chocolate and Nobel prices?

Image Credit: http://www.nejm.org/doi/full/10.1056/NEJMon1211064

Tymans's Law

Any statistic that appears interesting is almost certainly a mistake.

Summary

- The different kind of projects
 - Common Use Cases
 - Search strategies
- The steps in project understanding
- The different kinds of datasets
- The steps in data understanding
 - ETL
 - Describing your Data
 - Finding Patterns
 - Finding Models
 - Finding Predictors

- A tiny bit of History
- Correlation vs. Causality

Thank you

Guide to Intelligent Data Science Second Edition, 2020