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Summary of this lesson
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„There is no excuse for failing to plot and look“

What is the best way of plotting a dataset?
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*This lesson refers to chapter 4 of the GIDS book



Content of this lesson
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− Methods for One and Two Attributes

− Barchart and Histogram

− Boxplot

− Scatter plot and density plot

− Methods for Higher-dimensional Data

− Principal Component Analysis (PCA)

− Multidimensional Scaling (MDS)

− t-distributed Stochastic Neighbor Embedding (t-SNE)

− Parallel Coordinates

− Radar and Star Plots

− Sunburst Chart

− Correlation Analysis
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Datasets
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− Datasets used : adult dataset and outliers dataset

− Example Workflows: 
− „Simple Visualizations“  https://kni.me/w/dwugN1qYM2OOjzO4

− Read from CSV file, Excel file and SQLite.

− bar chart and histogram

− parallel coordinates

− box plot

− scatter plot

− table view.
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https://kni.me/w/dwugN1qYM2OOjzO4


Statistical Descriptors
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Descriptive Statistics
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Statistical measures can be used to describe a dataset:

− Range 

− Min/max values

− Mean       μ =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

− Variance 𝜎2 =
1

𝑛−1
σ𝑖=1
𝑛 (𝑥𝑖−μ)

2

− Standard deviation              𝜎 =
1

𝑛−1
σ𝑖=1
𝑛 (𝑥𝑖−μ)

2

− Median (The middle number; found by ordering all data points and picking out the one in the middle - or if there 

are two middle numbers, taking the mean of those two numbers)

− Mode (Most frequently occurring value)

− Percentiles (Quartiles)

− Number of missing values

− ... 
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Visualization Methods for 

One Attribute
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Bar chart
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− A bar chart is a simple way to depict the frequencies of the values of a 

categorical attribute.
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Histogram
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− A histogram shows the frequency distribution for a numerical attribute.

− The range of the numerical attribute is discretized into a fixed number of 

intervals (bins), usually of equal length.

− For each interval, the (absolute) frequency of values falling into it is 

indicated by the height of a bar.
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Median, quantiles, quartiles, interquartile ranges
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− Median: The value in the middle (for values sorted in increasing order)

− q%-quantile (0 < q < 100): The value for which q% of the values are 

smaller and 100-q% are larger. The median is the 50%-quantile

− Quartiles: 25%-quantile (1st quartile), median (2nd quantile), 75%-

quantile (3rd quartile)

− Interquartile range (IQR): 3rd quartile – 1st quartile
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Choice of number of bins
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− Best choice for number k of bins in the histogram?

− Sturge‘s Rule 𝑘 = 𝑙𝑜𝑔2 𝑛 + 1

− Through fixed bin length ℎ

𝑘 =
𝑚𝑎𝑥𝑖 𝑥𝑖 −𝑚𝑖𝑛𝑖 𝑥𝑖

ℎ
with ℎ =

3.5 ∙𝑠

𝑛
1
3

or ℎ =
2 ∙𝐼𝑄𝑅(𝑥)

𝑛
1
3

Where 𝑠 is the standard deviation of input feature 𝑥, 𝑥𝑖 its value in the i-th sample, and 𝑛 the 

number of samples in the dataset.
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Kurtosis and Skeweness
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− Skewness is the 3rd standardized moment of 𝑋, that is: 

෤𝜇3 = 𝐸
𝑋 − 𝜇

𝜎

3

=
𝐸 𝑋 − 𝜇 3

𝐸 𝑋 − 𝜇 3
=

𝜇3
𝜎3

− Skewness measures the asymmetry of the probability distribution of 𝑋

− Kurtosis is the 4th standardized moment of 𝑋, that is:

𝐾𝑢𝑟𝑡 𝑋 = 𝐸
𝑋 − 𝜇

𝜎

4

=
𝐸 𝑋 − 𝜇 4

𝐸 𝑋 − 𝜇 2 2
=

𝜇4
𝜎4

− Kurtosis measures the devaition from the peak in a Gaussian 

distribution: it measures the dispersion due to outliers

− Kurtosis of any univariate normal distribution is 3
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Boxplots

13Guide to Intelligent Data Science Second Edition, 2020

− Boxplots are a very compact way to visualize and summarize the main 

characteristics of a numeric attribute, through the median, the IQR, and 

possible outliers

median



Boxplots
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− Boxplots are a very compact way to visualize and summarize the main 

characteristics of a numeric attribute, through the median, the IQR, and 

possible outliers

IQR~ 50% 

of data



Boxplots
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− Boxplots are a very compact way to visualize and summarize the main 

characteristics of a numeric attribute, through the median, the IQR, and 

possible outliers

Farthest point or ~1.5 IQR



Boxplots
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− Boxplots are a very compact way to visualize and summarize the main 

characteristics of a numeric attribute, through the median, the IQR, and 

possible outliers

outlier
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Boxplots from normal distributions

− The same distribution can result 

in different boxplots

− This depends on the sample size 

𝑛

− Two samples from normal 

distribution with different size 𝑛

− For the small sample:
− Whiskers have different length, even if it is 

the same symmetric distribution

− No outliers

Boxplots from different samples from a 

standard normal distribution
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Boxplot of asymmetric distribution
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− Boxplots of different samples from exponential distribution with 𝜆 = 1
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Boxplots from different samples from  
exponential distribution with 𝜆 = 1

Exponential distribution with 𝜆 = 1



Visualization Methods for 

Two Attributes
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Scatter Plot
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− In scatter plots two attributes are plotted against each other

− Can be enriched with additional features (color, shape, size)

− Suitable for small number of points; not suitable for large datasets

− Points can hide each other -> add Jitter (a small random value to each 

point)
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Scatter plots of the Iris data set for sepal length vs. sepal width (left) and for petal length vs. petal width 

(right). All quantities are measured in centimetres

Petal length and width 
provide better class 

separation than sepal 
length and width 



Scatter Plot

21

− Scatter plot is not suitable for large datasets

− Alternatives:
− Density plot for example using semi-transparent points: the more points in the same place the less 

transparent

− Binning points into rectangles or hexagons and heat scale color
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Density plot (left) and a plot based on hexagonal binning (right) for a dataset 

with n = 100,000 instances



Scatter Plot to detect outliers
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− Scatter plots can be used to detect outliers
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outlier



Scatter Plot as a test

23

− Visualization can be used as a test

− Good News

− Visualization reveals patterns or exceptions => there is something in the 

dataset

− Bad News

− Visualization does not indicate anything specific => there might still be 

something in the dataset even if we do not see it

− For example, if we do not see outliers for that combination of features, that 

does not mean that outliers do not exist in the dataset.
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Methods for Higher-

Dimensional Data
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Visualization of three-dimensional data: 3D plot
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Example

− A data set distributed over a cube in 

a chessboard-like pattern.

− The colors are only meant to make 

the different cubes more easily 

discernible. They do not indicate 

classes.

− Note the outlier in the upper left 

corner

A display or plot is by definition two-dimensional, so that only max. 

two axes (attributes) can be incorporated.

3D techniques can be used to incorporate three axes (attributes).

3D scatter plot



Visualization of three-dimensional data: Scatter Matrixes
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− A matrix of scatter plots 𝑚 ×𝑚 where 𝑚 is the number of attributes 

(data dimensionality)

− For m attributes there are 𝑚
2

= 𝑚(𝑚 − 1) possible scatter plots

− e.g. For 50 attributes there are 2450 scatter plots!
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Scatter matrix



Parallel Coordinates Plot
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− Parallel coordinates draw the coordinate 

axes for each attribute parallel to each 

other, so that there is no limitation for 

the number of axes to be displayed.

− For each data object, a polyline is drawn 

connecting the values of the attributes 

on the corresponding axes.

− Maintains the original attributes 

− Limited number of entries

− How do we spot correlation between 

features?
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Parallel coordinates plot for the Iris data set



Parallel Coordinates Plot: „Cube Data“
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Parallel coordinates plot for the Cube data



Radar Plot
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− Similar idea of the Parallel Coordinates plot

− Axes are drawn in a star-like fashion intersecting in one point

− Also called spider plots

− Suitable for small datasets
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Radar plot for the Iris data set



Star Plots
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− In a star plot each object is drawn separately

− In a radar plot fashion

Guide to Intelligent Data Science Second Edition, 2020

Star plot for the Iris data set



Sunburst Chart
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− Display multidimensional hierarchical nominal data in a radial layout

− One section  one attribute

− Root attribute in the center, external sections are attributes located deeper in 

the hierarchy 

− Area of a section represents the accumulated value of all descending sections
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Visualization of higher-dimensional data
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How can we transform a higher-dimensional data set to have two or 

three dimensions?

− Preserve as much of the “structure” of the original data

− Define a measure to evaluate how well the original structure of the high-

dimensional dataset is preserved after transformation

− Find the transformation that gives the best value for the given measure
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Correlation Analysis
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Similarity in behavior
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How can we measure the similarity in behavior of two attributes?

− Pearson’s correlation coefficient

− Spearman’s rank correlation coefficient (Spearman’s rho)
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Pearson‘s correlation coefficient
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− Pearson’s correlation coefficient is a measure for the linear relationship 

between two numerical attributes X and Y and is defined as:

𝑟𝑥𝑦 =
σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦

𝑛 − 1 𝑠𝑥𝑠𝑦

− where ҧ𝑥 and ത𝑦 are the (sample) mean values of the attributes X and Y, 

respectively, and 𝑠𝑥 and 𝑠𝑦 are the corresponding (sample) standard deviations

− −1 ≤ 𝑟𝑥𝑦≤ 1

− The larger the absolute value of the Pearson correlation coefficient, the stronger 

the linear relationship between the two attributes. For 𝑟𝑥𝑦 = 1 the values of X 

and Y lie exactly on a line.

− Positive (negative) correlation indicates a linear relationship (a line) with 

positive (negative) slope.
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Spearman‘s rank correlation coefficient (Spearman‘s rho)
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− Spearman’s rank correlation coefficient (Spearman’s rho) is defined as:

𝜌 = 1 − 6
σ𝑖=1
𝑛 𝑟 𝑥𝑖 − 𝑟 𝑦𝑖

2

𝑛 𝑛2 − 1

where 𝑟 𝑥𝑖 is the rank of value 𝑥𝑖 when we sort the list (𝑥1, 𝑥2, …, 𝑥𝑛) in increasing 

order. 𝑟 𝑦𝑖 is defined analogously.

− When the rankings of the x- and y-values are exactly in the same order, 

Spearman’s rho will yield value 1.

− If they are in reverse order, Spearman’s rho will yield value −1.
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Practical Examples with 

KNIME Analytics Platform
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KNIME Workflow
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− Simple visualization
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KNIME Workflow
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− Inner workings of the visualization component
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KNIME Workflow
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− Interactive view
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Summary
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− Methods for One and Two Attributes

− Barchart and Histogram

− Boxplot

− Scatter plot and density plot

− Methods for Higher-dimensional Data

− Principal Component Analysis (PCA)

− Multidimensional Scaling (MDS)

− t-distributed Stochastic Neighbor Embedding (t-SNE)

− Parallel Coordinates

− Radar and Star Plots

− Sunburst Chart

− Correlation Analysis
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Thank you
For any questions please contact: education@knime.com

42
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