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Summary of this lesson
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„The more you know, the less you need“

-Yvon Chouinard

Can we condense information?

Guide to Intelligent Data Science Second Edition, 2020

*This lesson refers to chapter 4 of the GIDS book



Content of this lesson
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− Methods for Dimensionality Reduction

− Principal Component Analysis (PCA)

− Linear discriminant Analysis (LDA)

− Multidimensional Scaling (MDS)

− t-distributed Stochastic Neighbor Embedding (t-SNE)

Guide to Intelligent Data Science Second Edition, 2020



Datasets
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− Datasets used : adult dataset and outliers dataset

− Example Workflows: 
− „Dimensionality Reduction“ https://kni.me/w/EnmfIBCuLOFpYvc2

− PCA

− t-SNE

Guide to Intelligent Data Science Second Edition, 2020

https://kni.me/w/EnmfIBCuLOFpYvc2


PCA: Principal 

Component Analysis
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Principal Component Analysis: Goal
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− Method from statistics to construct a projection from the high-

dimensional space to a lower-dimensional space

− Uses the variance in the data as structure preservation criterion

− Projection must be to a linear subspace which preserves as much as 

possible of the original variance of the data

Guide to Intelligent Data Science Second Edition, 2020

First PC (solid line) in the direction of 

maximum variance; second PC (dashed 

line) in the direction of second max. 

variance and orthogonal to first PC.



Mean and Variance
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− (Sample) variance for one numerical attribute:

𝑠2 =
1

𝑛 − 1


𝑖=1

𝑛

𝑥𝑖 − 𝑥 2

− Where 𝑥𝑖 is the i-th sample in the dataset, 𝑛 the number of samples, and  𝑥 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 is the sample mean.

− Variance of a multidimensional data set = Sum of the variances of the attributes

− Covariance Matrix:

𝐶 =
1

𝑛 − 1


𝑖=1

𝑛

𝒙𝑖 − 𝒙 𝒙𝑖 − 𝒙 𝑇

Where 𝒙𝑖 is the i-th sample vector in the dataset, 𝑛 the number of samples, and  

𝒙 =
1

𝑛
σ𝑖=1
𝑛 𝒙𝑖 is the mean vector.
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Principal Component Analysis: Projection
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− The projection can be represented by a matrix 𝑴𝑚×𝑚 mapping the data 

points to the plane by:

𝒚 = 𝑴 ∙ (𝒙 − 𝒙)

− Where 𝒙 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 is the sample mean of 𝒙, i.e. the vector of 𝑚 mean 

values, 𝑛 the number of data, 𝑚 the data dimensionality, and ...

Guide to Intelligent Data Science Second Edition, 2020

M



Principal Component Analysis: Eigenvalues and Eigenvectors
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− … and 𝑴 = 𝒗1, 𝒗2, … , 𝒗𝑚

− 𝒗𝑗 is the j-th principal component, that is the vector in the direction of 

the j-th max. variance of the dataset

− With constraints:  

− 𝒗𝑘 ⊥ 𝒗𝑗 for k, j = 1, .., m and k ≠ 𝑗

− 𝑣𝑖 = 1

Solution:

− 𝒗𝑗 are the eigenvectors of the covariance matrix C of the dataset

− 𝜆𝑗 are the eigenvalues of the covariance matrix C of the dataset and 

the variance associated with each eigenvector

Guide to Intelligent Data Science Second Edition, 2020



Principal Component Analysis: Summary
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The projection matrix 𝑴𝑚×𝑚 is given by 𝑴 = 𝒗1, … , 𝒗𝑚

where the principal components 𝒗1, … , 𝒗𝑚 are the normalized eigenvectors 

of the covariance matrix C of the data

𝐶 =
1

𝑛 − 1


𝑖=1

𝑛

𝒙𝑖 − ഥ𝒙 𝒙𝑖 − ഥ𝒙 𝑇

Sorted by the corresponding eigenvalues 𝜆1 ≥ … ≥ 𝜆𝑚

Note.

− 𝜆 is called an eigenvalue of a matrix A, if there is a non-zero vector v such that Av = v holds.

− The vector v is called eigenvector to the eigenvalue ( as you learned in your maths lectures).

Guide to Intelligent Data Science Second Edition, 2020



Principal Component Analysis: Dimensionality Reduction
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− If 𝑀 moves the data from ℝ𝑚 to ℝ𝑚, there is no reduction in 

dimensionality. 

− We look for    𝑀: ℝ𝑚 ⇒ ℝ𝑞 with 𝑞 < 𝑚.

− Total variance in the dataset  𝜆1 + …+ 𝜆𝑚 with 𝜆1 ≥ … ≥ 𝜆𝑚.

− Let’s preserve just a fraction of the total variance:

𝜆1 + …+ 𝜆𝑞
𝜆1 + …+ 𝜆𝑚

− If we use the top 𝜆1 ≥ … ≥ 𝜆𝑞 we lose only a bit of the original variance

− We project the data onto the first 𝑞 principal components 𝒗1, 𝒗2, … , 𝒗𝑞
corresponding to the eigenvalues 𝜆1 ≥ … ≥ 𝜆𝑞, thus preserving the given 

fraction of the data variance

Guide to Intelligent Data Science Second Edition, 2020



Principal Component Analysis
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− PCA is a statistical procedure that orthogonally transforms the original n 

coordinates of a data set into a new set of n coordinates, called principal 

components

− We calculate the largest eigenvalue 𝜆1and the corresponding eigenvector 𝒗1 of 

the covariance matrix C, as the direction of the largest variance in the dataset

− Each succeeding component 𝒗𝑘 must follow the direction of the next largest 

possible variance under the constraint that it is orthogonal to (i.e., uncorrelated 

with) the preceding components

− 𝑣1 describes most of the variability in the data, 𝑣2 adds the next big contribution, 

and so on. In the end, the last 𝑣𝑠 do not bring much more information to 

describe the data.

− Thus, to describe the data we use only the top 𝑞 < 𝑚 (i.e., 𝑣1, 𝑣2, … , 𝑣𝑞) 

components with little - if any - loss of information

Guide to Intelligent Data Science Second Edition, 2020



Principal Component Analysis
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− Caveats:

− Results of PCA are quite difficult to interpret

− Data normalization is required (z-score normalization)

− Only effective on numeric columns

Guide to Intelligent Data Science Second Edition, 2020

Preservation of the variance of the Iris data set depending on the number of principal 

components.

Prinicipal Components

PC1 PC2 PC3 PC4

Proportion of variance 0.73 0.229 0.0367 0.00518

Cumulative Proportion 0.73 0.958 0.9948 1.0000    



Principal Component Analysis: the „Cube“ data
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− Impression that the data are uniformly 

distributed over a grid 

− Outlier not represented

Guide to Intelligent Data Science Second Edition, 2020

− Data are visibly not uniformly distributed

− Outlier is visible

PCA



LDA: Linear 

Discriminant Analysis
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Linear Discriminant Analysis: Goal
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− LDA is a classification algorithm based on class statistics

− It can also be used as a method to construct a projection from the 

high-dimensional space to a lower-dimensional space

− Uses the class separation as structure preservation criterion

− Projection must be to a linear subspace which preserves as much as 

possible of the original separation of the classes in the data

Guide to Intelligent Data Science Second Edition, 2020

First LD (red line) in the direction of 

maximum discriminability between 

classes; second LD (blue line) in the 

direction of second max. discriminability 

and orthogonal to first LD.



Linear Discriminant Analysis
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− 𝐿𝐷1 describes best the class separation in the data, 𝐿𝐷2 adds the next 

big contribution, and so on. In the end, the last 𝐿𝐷𝑠 do not bring much 

more information to separate the classes.

− Thus, for our classification problem, we could use only the top 𝑚 < 𝑛
(i.e., 𝐿𝐷1, 𝐿𝐷2, … , 𝐿𝐷𝑚) discriminants with little - if any - loss of 

information for classification

− Caveats (as for PCA):

− Results of LDA are quite difficult to interpret

− Normalization required

− Only effective on numeric columns

Guide to Intelligent Data Science Second Edition, 2020



Linear Discriminant Analysis vs. Principal Component Analysis
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− LDA and PCA are both statistical procedures that orthogonally 

transform the original n coordinates of a data set into a new set of n 

coordinates, called linear discriminants (LD) or Principal Components 

(PC).

− Discriminants maximize the separation between classes, components 

maximize the variance in the data

− PCA: unsupervised

− LDA: supervised

Guide to Intelligent Data Science Second Edition, 2020



MDS: Multidimensional 

Scaling
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Multi-Dimensional Scaling
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− Is not constructing an explicit mapping from the high-dimensional space 

into the low-dimensional space

− Only positions data points in the low-dimensional space

− Uses the distance between the high dimensional data points as 

structure preservation criterion (not the variance, not the class 

separability)

Guide to Intelligent Data Science Second Edition, 2020



Multi-Dimensional Scaling: Goal
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− Input:    (𝑥1, 𝑥2, …, 𝑥𝑛)  with 𝑥𝑖 ∈ ℝ
𝑚 =:𝑋 (input space)

− Output: (𝑝1, 𝑝2, …, 𝑝𝑛)  with 𝑝𝑖 ∈ ℝ
𝑞 =:𝑌 (output space, usually q= 2 or q=3)

Goal:

− Define a data point 𝑝𝑖 for each data object 𝑥𝑖such that all distances 𝑑𝑖𝑗
(𝑌)

between point 𝑝𝑖 and all other points 𝑝𝑗 in the output space 𝑌 are 

roughly the same as the corresponding distances 𝑑𝑖𝑗
(𝑋)

between the 

original data objects 𝑥𝑖 and 𝑥𝑗 in the input space 𝑋.

𝑑𝑖𝑗
(𝑌)

= 𝑝𝑖 − 𝑝𝑗 and       𝑑𝑖𝑗
(𝑋)

= 𝑥𝑖 − 𝑥𝑗

Guide to Intelligent Data Science Second Edition, 2020



Multi-Dimensional Scaling: Distance
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− Distance function requirements:

− Non negative 𝑑𝑖𝑗 ≥ 0

− Symmetric 𝑑𝑖𝑗 = 𝑑𝑗𝑖

− Positive definite 𝑑𝑖𝑖 = 0

− Usually Euclidean distance

− Starting Point: Distance matrix in input space 

𝑑𝑖𝑗
(𝑋)

1≤𝑖,𝑗≤𝑛

− Where 𝑑𝑖𝑗
(𝑋)

is the distance between data point 𝑥𝑖 and data point 𝑥𝑗 in the 

input space.

− Usually Euclidean distance in 𝑋 after normalization

Guide to Intelligent Data Science Second Edition, 2020



Multi-Dimensional Scaling: Objective functions
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− Objective functions (error measures) to define the quality of a 

solution

− Sum of squared errors 

𝐸0 = 

𝑖=1

𝑛



𝑗=𝑖+1

𝑛

𝑑𝑖𝑗
(𝑌)

− 𝑑𝑖𝑗
(𝑋) 2

− Normalised sum of squared errors

𝐸1 =
1

σ𝑖=1
𝑛 σ𝑗=𝑖+1

𝑛 𝑑𝑖𝑗
(𝑋) 2 

𝑖=1

𝑛



𝑗=𝑖+1

𝑛

𝑑𝑖𝑗
(𝑌)

− 𝑑𝑖𝑗
(𝑋) 2

− In contrast to E0, the value of E1 does neither depend on the number of data objects nor 

on the magnitude of the original distances

Guide to Intelligent Data Science Second Edition, 2020

The normalization factor 

does not influence the 

location of the minimum of 

the objective function



Multi-Dimensional Scaling: Objective functions
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− Relative Squared Error

𝐸2 = 

𝑖=1

𝑛



𝑗=𝑖+1

𝑛
𝑑𝑖𝑗
(𝑌)

− 𝑑𝑖𝑗
(𝑋)

𝑑𝑖𝑗
(𝑋)

2

− Mixed absolute and relative error (also called Stress)

𝐸3 =
1

σ𝑖=1
𝑛 σ𝑗=𝑖+1

𝑛 𝑑𝑖𝑗
(𝑋)



𝑖=1

𝑛



𝑗=𝑖+1

𝑛
𝑑𝑖𝑗
(𝑌)

− 𝑑𝑖𝑗
(𝑋)

𝑑𝑖𝑗
(𝑋)

2

− MDS based on 𝐸3 is called Sammon Mapping

Guide to Intelligent Data Science Second Edition, 2020



Multi-Dimensional Scaling: Solution
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− How to minimize the error measures?

− No closed solution

− Non-linear optimization problem with 𝑞 ∙ 𝑛 (2𝑛 for 𝑞 = 2) parameters to 

be optimized

− Even for a small dataset like the Iris dataset (𝑛 = 150), we need to optimize 300 

parameters!

− Because we are searching for the best position of 𝑝𝑖 in a two-dimensional space (x,y) for 

each one of the 150 data points

− Heuristic strategy needed ⇒ Typically a gradient descent method

Guide to Intelligent Data Science Second Edition, 2020



𝜕𝑓

𝜕𝑝
(𝑝0)

𝑝0

𝑓

𝑝

Reminder: gradient descent based solutions
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The gradient, i.e., the vector of partial derivatives of the objective function 

with respect to the model parameters, points in the direction of steepest 

ascend. 

− The gradient is the vector of partial derivatives: [
𝜕𝑓

𝜕𝑝1
,
𝜕𝑓

𝜕𝑝2
,
𝜕𝑓

𝜕𝑝3
, … ,

𝜕𝑓

𝜕𝑝𝑘
]

− The gradient points in the direction of steepest ascend.

Guide to Intelligent Data Science Second Edition, 2020



Reminder: gradient descent based solutions
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The gradient, i.e., the vector of partial derivatives of the error function with respect 

to the model parameters, points in the direction of steepest ascend. 

1. Start at a random point 𝑝𝑖=0, i.e. an arbitrary choice of the model parameters 

2. Calculate the gradient of the objective function [
𝜕𝑓

𝜕𝑝1
,
𝜕𝑓

𝜕𝑝2
,
𝜕𝑓

𝜕𝑝3
, … ,

𝜕𝑓

𝜕𝑝𝑘
]

3. From 𝑝𝑖 move a certain step in the opposite direction of the gradient (for an error 

function to minimize) and reach point 𝑝𝑖+1

4. Calculate the new value of the objective function in f(𝑝𝑖+1)

5. Repeat from 2.

Procedure continues until no more improvements on the objective function f(𝑝) can 

be achieved (step 4), a fixed number of gradient steps has been carried out, or 𝑝𝑖+1
is too close to 𝑝𝑖.

Guide to Intelligent Data Science Second Edition, 2020



Reminder: gradient descent based solutions
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Notes:

− 𝑓 must be differentiable

− The landscape of the objective function (𝑓 vs. 𝑃) 

cannot be plotted already for 𝑘 > 2

− The gradient descent procedure moves in steps 

along the objective function

− The step size: constant or adaptive?

− Problem of the local minima (maxima)

Guide to Intelligent Data Science Second Edition, 2020

It is recommended to run a gradient method 

repeatedly, starting with different initial 

points to increase the chance to find the 

global or at least a good local optimum.



Multi-Dimensional Scaling: gradient descent example
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− Error measure 𝐸1 =
1

σ𝑖=1
𝑛 σ𝑗=𝑖+1

𝑛 𝑑𝑖𝑗
(𝑋) 2 σ𝑖=1

𝑛 σ𝑗=𝑖+1
𝑛 𝑑𝑖𝑗

(𝑌)
− 𝑑𝑖𝑗

(𝑋) 2

− Gradient of error measure 𝐸1with respect to one data point 𝒚𝑘 in the 

output space

𝜕𝐸1
𝜕𝒚𝑘

=
2

σ𝑖=1
𝑛 σ𝑗=𝑖+1

𝑛 𝑑𝑖𝑗
(𝑋) 2

𝑗≠𝑘

𝑑𝑘𝑗
(𝑌)

− 𝑑𝑘𝑗
(𝑋) 𝒚𝑘 − 𝒚𝑗

𝑑𝑘𝑗
(𝑋)

using
𝜕𝑑𝑖𝑗

(𝑌)

𝜕𝒚
𝑘

=
𝜕

𝜕𝒚
𝑘

𝒚𝒊 − 𝒚𝒋 = ൝
𝒚
𝒌
−𝒚

𝒋

𝑑
𝑘𝑗
𝑌

𝑖𝑓 𝑖 = 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Guide to Intelligent Data Science Second Edition, 2020



Multidimensional Scaling: Algorithm
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− Caveats:

− Normalization before computing the distances 

− Assure that no distance between two data objects is 0 before applying MDS algorithm



Multidimensional Scaling

31

MDS (Sammon Mapping) for the Iris and the „cube“ datasets

Guide to Intelligent Data Science Second Edition, 2020



PCA vs. MDS vs. LDA
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PCA

− Preserves the 

variance of the 

dataset

− Provides explicit 

mapping to the lower-

dimensional space
− easier insertion of new data

− Lower computational 

complexity
− Covariance matrix can be 

calculated in linear time

Guide to Intelligent Data Science Second Edition, 2020

MDS

− Preserves the 

distances between 

data objects

− Does not provide 

explicit mapping
− New data cannot be projected

− Higher computational 

complexity
− Quadratic for the pairwise 

distance

− Complexity problems partially 

overcomed by sampling or 

variations of the error 

measures

LDA

− Preserves the 

separation among 

classes

− Provides explicit 

mapping to the lower-

dimensional space
− easier insertion of new data

− Lower computational 

complexity



t-SNE: t-distributed 

Stochastic Neighbor 

Embedding
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t-distributed Stochastic Neighbor Embedding

34

− Nonlinear dimensionality reduction technique based on nonlinear 

relationships among the data points

− Primarily used for visualization from very high-dimensional data to 2 or 3 

coordinates

− Works with probabilities of two data points being neighbours

− As for MDS, new data cannot be projected. All data must be used to find 

the new points.

Guide to Intelligent Data Science Second Edition, 2020



t-distributed Stochastic Neighbor Embedding
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In the input space:

− For any two data points 𝒙𝒊 and 𝒙𝒋, probabilities are defined as:

𝑝𝑖𝑗 =
𝑝𝑖|𝑗 + 𝑝𝑗|𝑖

2𝑛

− where 𝑝𝑗|𝑖 is the probability that object 𝒙𝒊 picks object 𝒙𝒋 as its neighbor

𝑝𝑗|𝑖 =
𝑒
−

𝒙𝒊−𝒙𝒋
2

2𝜎𝑖
2

σ𝑘≠𝑖 𝑒
−

𝒙𝒊−𝒙𝒌
2

2𝜎𝑖
2

− Parameter 𝜎𝑖 becomes smaller if density of points around 𝒙𝒊 is high and 

vice versa

Guide to Intelligent Data Science Second Edition, 2020



t-distributed Stochastic Neighbor Embedding
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In the output space:

− The corresponding probabilities for points 𝒚𝒊 and 𝒚𝒋 are defined using t-

or Cauchy distribution-like functions

𝑞𝑖|𝑗 =
1 + 𝒚𝒊 − 𝒚𝒋

2 −1

σ𝑘≠𝑖 1 + 𝒚𝒊 − 𝒚𝒌
2 −1

− The points 𝒚𝒊 are chosen in a way that the probabilities 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are 

as similar as possible according to the Kullback-Leibler divergence

𝐾𝐿 𝑝||𝑞 =

𝑖≠𝑗

𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗

Guide to Intelligent Data Science Second Edition, 2020



t-SNE is mainly used for visualization 

because:

− Aggressive dimensionality 

reduction

− Transformation of likelihood of 

pairs into visual proximity

− Capability to represent strange 

shapes of data

t-distributed Stochastic Neighbor Embedding

37Guide to Intelligent Data Science Second Edition, 2020

t-SNE applied to the „cube“ dataset.

The four original clusters are well 

preserved in the two-dimensional

representation and the outlier is also 

clearly visible.



Practical Examples with 

KNIME Analytics Platform
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KNIME Workflow
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− PCA and t-SNE techniques for data reduction to 2D space
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Thank you
For any questions please contact: education@knime.com

40
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