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Summary of this lesson

“Science is the systematic classification of experience”
-George Henry Lewes

What is the simplest classifier?

*This lesson refers to chapter 8 of the GIDS book
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Content of this lesson

Bayes Classifiers
Motivation
Naive Bayes classifiers
Full Bayes classifiers
Naive vs. Full Bayes classifiers
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Datasets

Datasets used : adult dataset

Example Workflows:
,Naive Bayes® https://kni.me/w/0oyhMdWYK5w19xGj
Naive Bayes classifier

Binary classification problem (Income > or < 50K), solved using Naive Bayes

Naive Bayes Learner
» PIAI -

Train Naive Bayes

CSV Reader Partitioning

»-
» oo

Naive Bayes
Predictor Scorer (JavaScript)

D

Read the 80% training
adult dataset 20% test
stratified sampling
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Perform Classification
classification performance


https://kni.me/w/0oyhMdWYK5w19xGj

Bayes Classifiers
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Givendata D = {(x;,Y)|i=1,2,..,n}
x;. Object description
Y;: Target attribute

Instead of finding structure in a data set, let’s focus on (unknow)
dependency among attributes

Bayes classifiers express their model as simple probabilities
Can be used as a gold standard for evaluating other learning methods

=> Any model should perform the same or better than a Naive Bayes classifier
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Bayes Theorem

The conditional probability P(h|E), hypothesis h is true given event E

P(E|Rh) - P(h)
P(E)

P(h|E) =

P(h): Probability of hypothesis h
P(E): Probability of event E
P(E|h): Conditional probability of event E given hypothesis h
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Choosing Hypotheses

We want the most probable hypothesis h € H for a given event E

= Maximum a posteriori hypothesis (MAP):

hyap = argmax P(h|E)

P(E|h) - P(h)
= BNy

= argmax P(E|h) - P(h)
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Maximum Likelihood Hypothesis

If we can assume that every hypothesis h € H is equally likely
In other words, P(h;) = P(h;) forall h;, hj € H

Then we can get the maximum likelihood hypothesis

hy = arg max P(E|h)
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Naive Bayes Classifiers



Bayes Classifiers

Probability P(h) can be estimated based given data D

Probability P(E|h) can be determined based on attributes
A, Ay, A Deing E = (aq,ay, -+, an)

# class h with attributes(a,a,, , a.y,)
# class h

P(Elh) =
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Bayes Classifiers

Problem:

Not all combinations of 44, 4,,--+, 4,,, may be observed

For 10 nominal attributes with 3 possible values for each attribute, there are 3'° = 59049 possible
combinations!

Solution:

Naive, unrealistic assumption that attributes are independent given the class
P(E = (as,az,+,am)lh) = P(aq|h) - -+ P(as|h) = [1g,ep P(a;|h)

Where P(a;|h) can be computed easily as

# class hwith A; = q;
# class h

P(alh) =
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Naive Bayes Classifiers

Given a data set with only nominal attributes
For attributes E = (aq,a,, -+, a,,), the predicted class h € H is derived:

Compute the likelihood L(h|E) under the assumption that A, A, -+, A,
are independent given the class

L(h|E)=1la;ee P(ailh) - P(h)
Assign E to the class h € H with the highest likelihood

pred(E)= arg max L(E|h)
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Naive Bayes Classifiers

This classifier is called naive because of the conditional independence
assumption among A4, 4,, -, A,

Needless to say, this is an unrealistic assumption in most cases

But a naive Bayes classifier often yields good results

Especially when not too many attributes are correlated
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Example: Naive Bayes Classifier

Example

Given the dataset D:

ID || Height | Weight | Long hair | Sex
1 m n n m
2 s | y f
3 t h n m
4 s n y f
5 t n y f
6 s | n f
7 s h n m
8 m n n f
9 m | y f

10 t n n m

we want to predict the sex (male or female) of a person x with the

following attribute values:

x = (Height = tall, Weight = [ow, Long hair = yes)

Guide to Intelligent Data Science Second Edition, 2020
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Example: Naive Bayes Classifier

Example

We need to calculate

L(Sex = m|Height = t, Weight = [, Long hair = y)

= P(Height = t|Sex = m)-
P(Weight = [|Sex = m):
P(Long hair = y|Sex = m)-
P(Sex = m)

and
L(Sex = f|Height = t, Weight = [, Long hair = y)

P(Height = t|Sex = f)-
P(Weight = [|Sex = f)
P(Long hair = y|Sex = f)
P(Sex = f).
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Example: Naive Bayes Classifier

Example
P(Sex =m) =4/10=2/5

| Height | Weight | Long hair | Sex

m n

© o~ o~ wnn e~ 0O

—+ 3 3 u WV + U ~+ W0
5 — 3 T — 3 S T —
O <X 5 0 oK K O
3 —h —h 3 —h — —h 3 —h 3

—
o
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Example: Naive Bayes Classifier

Example
P( ISex =m) =2/4=1/2
ID || Height | Weight | Long hair | Sex
1 m n n m
S | y f
4 S n y f
5 t n y f
6 S I n f
7 S h n m
8 m n n f
9 m | y f

Guide to Intelligent Data Science Second Edition, 2020
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Example: Naive Bayes Classifier

Example
P(Weight = [|Sex =m) =0/4 =0

| Height | Weight | Long hair | Sex

m

=)

n

© 0o~ o b wn — 0O

+ 3 3 0 VvV + 0 &+ W
5> — 3 T — 3 S T —
O <X 0 0 O K oK
3 —h —h 3 —h —h —h 3 —h 3

(I
o
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Example: Naive Bayes Classifier

Example
P( |ISex =m) =0/4=0
ID || Height | Weight | Long hair | Sex
1 m n n m
2 S | y f
3 t h n m
4 S n y f
5 t n y f
6 S | n f
7 S h n m
8 m n n f
9 m | y f
10 t n n m

Guide to Intelligent Data Science Second Edition, 2020
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Example: Naive Bayes Classifier

Example

L(Sex = m|Height = t, Weight = [, Long hair = y)

_ 2004 1,452 _,
4 4 4 10 2 5
= the likelihood of person x being a men is 0.

ID || Height | Weight | Long hair | Sex
1 m n n m
3 h n m
4 S n y f
5 t n y f
6 S I n f
7 S h n m
8 m n n f
9 m | y f

10 n n m

Guide to Intelligent Data Science Second Edition, 2020
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Example: Naive Bayes Classifier

Example
P(Sex = f)=6/10=3/5
ID || Height | Weight | Long hair | Sex
1 m n n m
2 S | y f
3 t h n m
4 S n y f
5 t n y f
6 S | n f
/ S h n m
8 m n n f
9 m | y f
10 t n n m

Guide to Intelligent Data Science Second Edition, 2020
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Example: Naive Bayes Classifier

Example
P( |Sex = f) =1/6
ID || Height | Weight | Long hair | Sex
1 m n n m
2 S | y f
3 t h n m
4 S n y f
6 S | n f
I S h n m
8 m n n f
9 m | y f
10 t n n m

Guide to Intelligent Data Science Second Edition, 2020
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Example: Naive Bayes Classifier

Example

P(Weight = [|Sex = f) =3/6 = 1/2

ID || Height | Weight | Long hair | Sex
1 m n n m
2 S | y f
3 t h n m
4 S n y f
5 t n y f
6 S | n f
I S h n m
8 m n n f
9 m | y f

10 g n n m
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Example: Naive Bayes Classifier

Example
P( ISex = f) =4/6 =2/3
ID || Height | Weight | Long hair | Sex
1 m n n m
3 t h n m
6 S | f
I S h n m
8 m n n f
10 t n n m
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Example: Naive Bayes Classifier

Example

L(Sex = f|Height = ¢, Weight = [, Long hair = y)
3 6 1 1 2 3 1

= the likelihood of person x being a female is %

ID || Height | Weight | Long hair | Sex
1 m n n m
2 S I f
3 t h n m
4 S n f
5 n f
6 S I n f
7 S h n m
8 m n n f
) m I f

10 t n n m

Guide to Intelligent Data Science Second Edition, 2020
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Example: Naive Bayes Classifier

Example

1

L(Sex = f|Height = t, Weight = [, Long hair = y) = =

L(Sex = m|Height = t, Weight = [, Long hair =y) =0

Classification of person
X = (Height = tall, Weight = low, Long hair = yes)

as female (f).

Notice

The data set D does not contain any object with this combination of
values.

= A full Bayes classifier would not be able to classify this object.

Guide to Intelligent Data Science Second Edition, 2020

27



Example: Naive Bayes Classifier

The object (m, n, n) is classified as m although the data sets contains
two such objects, one from class m and one from class f.

The main impact comes from the attribute Long hair = n, having
probability 1 in class m, but a low probability in class f.

ID || Height | Weight | Long hair | Sex
1 m n n m
2 S | y f
3 t h n m
4 S n y f Input L(m|...) L(f|...) Class
5 t n y f (m,n,n) %ﬁ%%zz—lo %-%-%-%:% m
6 s | n f
7 s h n m
8 m n n f
9 m I y f
10 t n n m

Guide to Intelligent Data Science Second Edition, 2020
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Example: Naive Bayes Classifier

The object (t, h, y) cannot be classified since the likelihood is zero for
both classes

ID || Height | Weight | Long hair | Sex

1 m n n m

2 s | y f

3 t h n m

4 s n y f

5 t n y f

6 s | n f

; s h n T Input L(m|...) L(f]...) Class
m n n — 1 : : AR

9 m | y : (t,h,n) %-%.%U-liglzl_lo %.%.é.%zg m

10 t n n m (fh“l/) Z'Z'E‘EZO g'g'g'ﬁzo ?
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Laplace Correction

If a single likelihood is zero, then the overall likelihood is zero
automatically, even then when the other likelihoods are high

Input L(m|...) L(f]...) Class
ho) |33 0 5=0]3 3 =0 °
Solution: Laplace correction y
PO =2 = py) = —
Y= Y v ldom(Y)| +n
Y + Nyy

Nyx
dom(X)

Ny .
P(x|ly) = —= P(x|y) =

ny, Y - ldom(X)| +n,,

no. of data
no of data from class y

no. of data from class y with value x for attribute X
no. of distinct values in X
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Laplace Correction

Example
Laplace correction for P(Height = ... |Sex = m) with v =1
. s 1+1 2
P(s|m) = i T,lm" _ 1+t =z
v - |dom(Height)| +n,, 1-3+4 7
Height # #La,pla,ce P P
S 1 2 1/4 ] 2/7
m 1 2 1/4 | 2/7
t 2 3 2/4 | 3/7
Notice
o v = 0: Maximum likelihood estimation
o Common choices: v =1 or v = %
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Naive Bayes Classifier: Implementation

Freguency tables are generated when constructing a naive Bayes
classifier

Probability distribution of each attribute can be obtained from the
frequency table

To learn from a naive Bayes classifier, corresponding frequencies are
multiplied from the tables
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Treatment of Missing Values

During learning: The missing values are simply not counted for the
frequencies of the corresponding attribute.

During classification: Only the probabilities (likelihoods) of those
attributes are multiplied for which a value is available.
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Numerical Attributes

Assume a normal distribution for a numerical attribute X

(x — “le)z
20)%'3,

fxly) =

exp| —

1
V2maoyy

Estimation of the mean value
1 n
Hx|y = —z t(y; = y) - x;[X]
ny 1=1
Estimation of the variance

1 n
Gy =77 ), 100 =) (xilX] = fixy)’

n;, i=
n?’ =n, ; Max.lmum I|kgllhopd estimation (y; =y) = {
n, =n, —1 :Unbiased estimation

Guide to Intelligent Data Science Second Edition, 2020
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Example: Numerical Attributes

100 data points, 2 classes
Small squares: class mean
Inner ellipses: 1 s.d. from the mean
Outer ellipses: 2 s.d. from the mean

Classes overlap = classification is
not perfect

Guide to Intelligent Data Science Second Edition, 2020
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Naive Bayes Classifier: Iris Data

150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

4 numerical attributes

Sepal length

Sepal width

Petal length (shown on x-axis)
Petal width (shown on y-axis)

6 mis-classification on the training
data

Guide to Intelligent Data Science Second Edition, 2020

Naive Bayes classifier
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Full Bayes Classifiers



Example: Numerical Attributes

20 data points, 2 classes

Small squares: class mean

Inner ellipses: 1 s.d. from the mean
Outer ellipses: 2 s.d. from the mean

Attributes are not conditionally
Independent given the class

Naive Bayes classifier
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Full Bayes Classifiers

Restricted to numeric or metric attributes — only the target is nominal
Each class can be described by a multivariate normal distribution:

T
1 (m = txyly) Zxputy (Xm = Bxygly)
flxyly) = exp | — >
J@mm|Z,
Xy set of metric attributes
Xy attribute vector

Uxply- mean.value vect.or for class y
Xx,ly-  covariance matrix for class y

Joint distribution with covariance among attributes
—> Conditional independence no longer holds

Guide to Intelligent Data Science Second Edition, 2020
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Full Bayes Classifiers

Estimation of the (class-conditional) mean value vector
1 n
Hx|y = —Z Ty =) - X[ Xum]
ny =1

Estimation of the (class-conditional) covariance matrix

- 1 n R R T
Zxuly = n/yzile()’i = y) X (x;[Xp] — Ax,y1y) (i [Xne] — fixyy1y)

ny, = n,, : Maximum likelihood estimation
ny, =n, —1 :Unbiased estimation
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Full Bayes Classifiers

Iris data revisited

150 data points, 3 classes
Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

4 numerical attributes
Sepal length
Sepal width
Petal length (shown on x-axis)
Petal width (shown on y-axis)

2 mis-classification on the training
data

Guide to Intelligent Data Science Second Edition, 2020
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Naive vs. Full Bayes
Classifiers



Naive vs. Full Bayes Classifiers

Naive Bayes classifiers for numerical data - full Bayes classifiers with
diagonal covariance matrices

Naive Bayes classifier Full Bayes classifier
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Naive vs. Full Bayes Classifiers

Iris data
Naive Bayes classifier Full Bayes classifier
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Pros:
Gold standard for comparison with other classifiers
High classification accuracy in many applications
Classifier can easily be adapted to new training objects
Integration of domain knowledge

cCons:

The conditional probabilities my not be available
Independence assumptions might not hold for data set

Guide to Intelligent Data Science Second Edition, 2020
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Practical Examples with
KNIME Analytics Platform



KNIME Workflow

Naive Bayes classification of the income on the adult data

Binary classification problem (Income > or < 50K), solved using Naive Bayes

CSV Reader

@_ﬁp

e

Read the
adult dataset

Partitioning

>
mma]
PDI,’

80% training
20% test
stratified sampling

Guide to Intelligent Data Science Second Edition, 2020

Naive Bayes Learner
» PRI

Train Naive Bayes

Naive Bayes
Predictor

Perform
classification

Scorer (JavaScript)
»
> »
[& >

Classification
performance
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KNIME Workflow

Naive Bayes Learner node showing conditional probabilities and
distributions involved in the decision process

MNaive Bayes Learer View - 0:19 - Naive Bayes Leamer (Train Naive Bayes) - m] x
File
A\ The following are skipped: v/Too many values
Class counts for income A
Class: =50K >50K
Count: 19775 6273

Total count: 26048

Threshold to used for zero probabilities: 1.0E-4

Skipped attributes: native-country/Too many values

Artributes with at least one missing value: workclass, occupation

Gaussian distribution for age per class value

=50K >50K
Count: 19775 6273
Mean: 36.7604 44 26495
Std. Deviation: 13.98595 1055777
Rate: 76% 24%
P(age-bin | class=7)
Class/age-bin 34 or less 35-55 56 or more
=50K 10065 7370 2340
=50K 1201 4151 021
Rate: 43% 44% 13%
Gaussian distribution for capital-gain per class value
=50K =50K
Count: 19775 6273
Mean: 14904339 408825809
Std. Deviation: 98320789 14858 23876
Rate: 76% 24% .
< >
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Thank you
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