
Bayes 

Classifiers



Summary of this lesson
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“Science is the systematic classification of experience”

-George Henry Lewes

What is the simplest classifier?
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*This lesson refers to chapter 8 of the GIDS book
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Content of this lesson

− Bayes Classifiers

− Motivation

− Naive Bayes classifiers

− Full Bayes classifiers

− Naive vs. Full Bayes classifiers
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Datasets
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− Datasets used : adult dataset

− Example Workflows: 
− „Naive Bayes“ https://kni.me/w/0oyhMdWYK5w19xGj

− Naive Bayes classifier
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https://kni.me/w/0oyhMdWYK5w19xGj


Bayes Classifiers

5Guide to Intelligent Data Science Second Edition, 2020



Motivation
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Given data

− Instead of finding structure in a data set, let’s focus on (unknow) 

dependency among attributes

− Bayes classifiers express their model as simple probabilities

− Can be used as a gold standard for evaluating other learning methods

➔ Any model should perform the same or better than a Naïve Bayes classifier
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𝒟 = 𝒙𝑖 , 𝑌𝑖 𝑖 = 1,2, … , 𝑛

𝒙𝑖: Object description

𝑌𝑖: Target attribute



Bayes Theorem
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− The conditional probability 𝑃 ℎ 𝐸 , hypothesis ℎ is true given event 𝐸

− 𝑃(ℎ): Probability of hypothesis ℎ

− 𝑃(𝐸): Probability of event 𝐸

− 𝑃 𝐸 ℎ : Conditional probability of event 𝐸 given hypothesis ℎ
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𝑃 ℎ 𝐸 =
𝑃 𝐸 ℎ ∙ 𝑃(ℎ)

𝑃(𝐸)



Choosing Hypotheses
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− We want the most probable hypothesis ℎ ∈ 𝐻 for a given event 𝐸

➔ Maximum a posteriori hypothesis (MAP):
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ℎ𝑀𝐴𝑃 = argmax
ℎ∈𝐻

𝑃 ℎ 𝐸

= argmax
ℎ∈𝐻

𝑃 𝐸 ℎ ∙ 𝑃(ℎ)

𝑃(𝐸)
= argmax

ℎ∈𝐻
𝑃 𝐸 ℎ ∙ 𝑃(ℎ)



Maximum Likelihood Hypothesis
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− If we can assume that every hypothesis ℎ ∈ 𝐻 is equally likely

− In other words, 𝑃 ℎ𝑖 = 𝑃 ℎ𝑗 for all ℎ𝑖, ℎ𝑗 ∈ 𝐻

− Then we can get the maximum likelihood hypothesis
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ℎ𝑀𝐿 = argmax
ℎ∈𝐻

𝑃 𝐸 ℎ



Naïve Bayes Classifiers
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Bayes Classifiers
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− Probability 𝑃(ℎ) can be estimated based given data 𝒟

− Probability 𝑃 𝐸 ℎ can be determined based on attributes 

𝐴1, 𝐴2, ⋯ , 𝐴𝑚 being 𝐸 = 𝑎1, 𝑎2, ⋯ , 𝑎𝑚

Guide to Intelligent Data Science Second Edition, 2020

𝑃 ℎ =
# 𝑐𝑙𝑎𝑠𝑠 ℎ

# 𝑡𝑜𝑡𝑎𝑙

𝑃 𝐸 ℎ =
# 𝑐𝑙𝑎𝑠𝑠 ℎ 𝑤𝑖𝑡ℎ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑎1, 𝑎2, ⋯ , 𝑎𝑚

# 𝑐𝑙𝑎𝑠𝑠 ℎ



Bayes Classifiers
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Problem:

− Not all combinations of 𝐴1, 𝐴2, ⋯ , 𝐴𝑚 may be observed

− For 10 nominal attributes with 3 possible values for each attribute, there are 310 = 59049 possible 

combinations!

Solution:

− Naïve, unrealistic assumption that attributes are independent given the class

− Where 𝑃 𝑎𝑖 ℎ can be computed easily as
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𝑃 𝐸 = 𝑎1, 𝑎2, ⋯ , 𝑎𝑚 ℎ = 𝑃 𝑎1 ℎ ∙ ⋯ ∙ 𝑃 𝑎1 ℎ = ς𝑎𝑖∈𝐸
𝑃 𝑎𝑖 ℎ

𝑃 𝑎𝑖 ℎ =
# 𝑐𝑙𝑎𝑠𝑠 ℎ 𝑤𝑖𝑡ℎ 𝐴𝑖 = 𝑎𝑖

# 𝑐𝑙𝑎𝑠𝑠 ℎ



Naïve Bayes Classifiers
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Given a data set with only nominal attributes

For attributes 𝐸 = 𝑎1, 𝑎2, ⋯ , 𝑎𝑚 , the predicted class ℎ ∈ 𝐻 is derived: 

− Compute the likelihood 𝐿 ℎ 𝐸 under the assumption that 𝐴1, 𝐴2, ⋯ , 𝐴𝑚
are independent given the class

− Assign E to the class ℎ ∈ 𝐻 with the highest likelihood
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𝐿 ℎ 𝐸 =ς𝑎𝑖∈𝐸
𝑃 𝑎𝑖 ℎ ∙ 𝑃(ℎ)

𝑝𝑟𝑒𝑑(𝐸)= argmax
ℎ∈𝐻

𝐿 𝐸 ℎ



Naïve Bayes Classifiers
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− This classifier is called naïve because of the conditional independence 

assumption among 𝐴1, 𝐴2, ⋯ , 𝐴𝑚

− Needless to say, this is an unrealistic assumption in most cases

− But a naïve Bayes classifier often yields good results

− Especially when not too many attributes are correlated

Guide to Intelligent Data Science Second Edition, 2020



Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier

20Guide to Intelligent Data Science Second Edition, 2020



Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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Example: Naïve Bayes Classifier
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− The object (𝑚, 𝑛, 𝑛) is classified as 𝑚 although the data sets contains 

two such objects, one from class 𝑚 and one from class 𝑓.

− The main impact comes from the attribute Long hair = 𝑛, having 

probability 1 in class 𝑚, but a low probability in class 𝑓.
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Example: Naïve Bayes Classifier
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− The object (𝑡, ℎ, 𝑦) cannot be classified since the likelihood is zero for 

both classes
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Laplace Correction

30

− If a single likelihood is zero, then the overall likelihood is zero 

automatically, even then when the other likelihoods are high

− Solution: Laplace correction 𝜸
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𝑃 𝑦 =
𝑛𝑦

𝑛
⟹ 𝑃 𝑦 =

𝛾 + 𝑛𝑦

𝛾 ∙ 𝑑𝑜𝑚 𝑌 + 𝑛

𝑃 𝑥|𝑦 =
𝑛𝑦𝑥

𝑛𝑦
⟹ 𝑃 𝑥|𝑦 =

𝛾 + 𝑛𝑦𝑥

𝛾 ∙ 𝑑𝑜𝑚 𝑋 + 𝑛𝑦

𝑛 no. of data

𝑛𝑦 no of data from class 𝑦

𝑛𝑦𝑥 no. of data from class 𝑦 with value 𝑥 for attribute 𝑋

𝑑𝑜𝑚(𝑋) no. of distinct values in 𝑋



Laplace Correction
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Naïve Bayes Classifier: Implementation
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− Frequency tables are generated when constructing a naïve Bayes 

classifier

− Probability distribution of each attribute can be obtained from the 

frequency table

− To learn from a naïve Bayes classifier, corresponding frequencies are 

multiplied from the tables
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Treatment of Missing Values
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− During learning: The missing values are simply not counted for the 

frequencies of the corresponding attribute.

− During classification: Only the probabilities (likelihoods) of those 

attributes are multiplied for which a value is available.
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Numerical Attributes
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− Assume a normal distribution for a numerical attribute 𝑋

− Estimation of the mean value

− Estimation of the variance
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𝑓 𝑥 𝑦 =
1

2𝜋𝜎𝑋|𝑦
exp −

𝑥 − 𝜇𝑋|𝑦
2

2𝜎𝑋|𝑦
2

ො𝜇𝑋|𝑦 =
1

𝑛𝑦


𝑖=1

𝑛

𝜏 𝑦𝑖 = 𝑦 ∙ 𝒙𝑖[𝑋]

ො𝜎𝑋|𝑦
2 =

1

𝑛𝑦
′ 

𝑖=1

𝑛

𝜏 𝑦𝑖 = 𝑦 ∙ 𝒙𝑖 𝑋 − ො𝜇𝑋|𝑦
2

𝑛𝑦
′ = 𝑛𝑦 : Maximum likelihood estimation

𝑛𝑦
′ = 𝑛𝑦 − 1 : Unbiased estimation

𝜏 𝑦𝑖 = 𝑦 = ൜
1 𝑖𝑓 𝑡𝑟𝑢𝑒
0 𝑒𝑙𝑠𝑒



Example: Numerical Attributes

35

− 100 data points, 2 classes

− Small squares: class mean

− Inner ellipses: 1 s.d. from the mean

− Outer ellipses: 2 s.d. from the mean

− Classes overlap ➔ classification is 

not perfect
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Naïve Bayes Classifier: Iris Data
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− 150 data points, 3 classes
− Iris setosa (red)

− Iris versicolor (green)

− Iris virginica (blue)

− 4 numerical attributes
− Sepal length

− Sepal width

− Petal length (shown on x-axis)

− Petal width (shown on y-axis)

− 6 mis-classification on the training 

data

Guide to Intelligent Data Science Second Edition, 2020



Full Bayes Classifiers
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Example: Numerical Attributes
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− 20 data points, 2 classes

− Small squares: class mean

− Inner ellipses: 1 s.d. from the mean

− Outer ellipses: 2 s.d. from the mean

− Attributes are not conditionally 

independent given the class
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Full Bayes Classifiers
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− Restricted to numeric or metric attributes – only the target is nominal

− Each class can be described by a multivariate normal distribution:

Joint distribution with covariance among attributes 

→ Conditional independence no longer holds
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𝑓(𝒙𝑀|𝑦) =
1

2𝜋 𝑚 𝜮𝑿𝑀|𝑦

exp −
𝒙𝑀 − 𝜇𝑿𝑀|𝑦

Τ
𝜮𝑿𝑀|𝑦
−1 𝒙𝑀 − 𝜇𝑿𝑀|𝑦

2

𝑿𝑀: set of metric attributes

𝒙𝑀: attribute vector

𝜇𝑿𝑀|𝑦: mean value vector for class 𝑦

𝜮𝑿𝑀|𝑦: covariance matrix for class 𝑦



Full Bayes Classifiers
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− Estimation of the (class-conditional) mean value vector

− Estimation of the (class-conditional) covariance matrix
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ො𝜇𝑿|𝑦 =
1

𝑛𝑦


𝑖=1

𝑛

𝜏 𝑦𝑖 = 𝑦 ∙ 𝒙𝑖[𝑿𝑀]

𝑛𝑦
′ = 𝑛𝑦 : Maximum likelihood estimation

𝑛𝑦
′ = 𝑛𝑦 − 1 : Unbiased estimation

𝜮𝑿𝑀|𝑦 =
1

𝑛′𝑦


𝑖=1

𝑛

𝜏 𝑦𝑖 = 𝑦 × 𝒙𝑖 𝑿𝑀 − ො𝜇𝑿𝑀|𝑦 𝒙𝑖 𝑿𝑀 − ො𝜇𝑿𝑀|𝑦
𝑇



Full Bayes Classifiers
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Iris data revisited

− 150 data points, 3 classes
− Iris setosa (red)

− Iris versicolor (green)

− Iris virginica (blue)

− 4 numerical attributes
− Sepal length

− Sepal width

− Petal length (shown on x-axis)

− Petal width (shown on y-axis)

− 2 mis-classification on the training 

data
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Naive vs. Full Bayes 

Classifiers
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Naïve vs. Full Bayes Classifiers
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− Naïve Bayes classifiers for numerical data → full Bayes classifiers with 

diagonal covariance matrices
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Naïve vs. Full Bayes Classifiers
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− Iris data

Guide to Intelligent Data Science Second Edition, 2020



Summary
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Pros:

− Gold standard for comparison with other classifiers

− High classification accuracy in many applications

− Classifier can easily be adapted to new training objects

− Integration of domain knowledge

Cons:

− The conditional probabilities my not be available

− Independence assumptions might not hold for data set
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Practical Examples with 

KNIME Analytics Platform
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KNIME Workflow
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− Naïve Bayes classification of the income on the adult data
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KNIME Workflow
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− Naïve Bayes Learner node showing conditional probabilities and 

distributions involved in the decision process
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Thank you
For any questions please contact: education@knime.com
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