
Regressions



Summary of this lesson

2

“All models are approximations. Essentially, all models are wrong, but 

some are useful.”

-George Box

How can we model the data?

*This lesson refers to chapter 8 of the GIDS book
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Content of this lesson

− The Regression Task

− Linear Regression

− Other Regressions

− Logistic Regression

− Robust Regression

− Regression for Classification

− Practical Example
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Datasets
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− Datasets used : adult dataset

− Example Workflow: 
− „Logistic regression“ https://kni.me/w/LWHdcrt_DFIepk0p

− Missing value handling

− Logistic regression

Guide to Intelligent Data Science Second Edition, 2020

https://kni.me/w/LWHdcrt_DFIepk0p


The Regression Task
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Note
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− We are focusing on methods that find explanations for an unknown 

dependency within the data.

− Supervised (because we know the desired outcome)

− Descriptive (because we care about explanation)
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The Regression Task
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− Goal: Explain how target attribute depends on descripitive attributes

− Target attributes ➔ Response variable

− Descriptive attributes ➔ Regressor variables

− As a parameterized function class f

− Estimate parameters to describe the 

relationship

− Must be simple enough for interpolation and 

extrapolation purposes

− Example:

Line (black) v.s. Polynomial (blue) with degree 7
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The Regression Task: formally

8

Given a dataset     𝐷 = 𝒙𝑖 , 𝑦𝑖 | 𝑖 = 1,… , 𝑛 with 𝑛 tuples

− 𝒙: Object description 𝑥1, … , 𝑥𝑘

− 𝑦: Numerical target attribute

Find a function

𝑓: dom 𝑥1 × … × dom 𝑥𝑘 → 𝑦 ∈ ℝ

minimizing the error 

𝐸 𝑓 𝑥1, … , 𝑥𝑘 , 𝑦

for all given 𝑛 data objects 𝒙𝑖 , 𝑦𝑖 .
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Linear Regression
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Regression Line

10

− Given a data set with two continuous attributes, 𝑥 and 𝑦

− There is an approximate linear dependency between 𝑥 and 𝑦

− We find a regression line (i.e., determine the parameters 𝑎 and 𝑏) such 

that the fits the data as well as possible

− Examples:
− Trend estimation (e.g., oil price over time)

− Epidemiology (e.g., cigarette smoking vs. lifespan)

− Finance (e.g., return on investment vs. return on all risky assets)

− Economics (e.g., spending vs. available income)

𝑦 ≈ 𝑎 + 𝑏𝑥
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Regression Line
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− What is a good fit?

x

y

yi
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Cost Function
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− The error, or the residual, is calculated at each data point

− The sum of square errors (SSE) is chosen as cost function (to be 

minimized)

− Referred as the 

least square method

σ𝑖=1
𝑛 𝑒𝑖

2 = σ𝑖=1
𝑛 ෝ𝑦𝑖 − 𝑦𝑖

2

x

y

Residual
ei

yi
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Cost Functions
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− Sum of square errors

− Other reasonable cost functions

− mean absolute distance

− mean Euclidean distance

− maximum absolute distance in y-direction (or equivalently: the

− maximum squared distance in y-direction)

− maximum Euclidean distance

− . . .
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Construction
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− Think of a straight line ො𝑦 = 𝑓 𝑥 = 𝑎 + 𝑏𝑥

− Find 𝑎 and 𝑏 to model all observations (𝑥𝑖 , 𝑦𝑖) as close as possible

− ➔ SSE 𝐹 𝑎, 𝑏 = σ𝑖=1
𝑛 (𝑓 𝑥 − 𝑦𝑖)

2 = σ𝑖=1
𝑛 (𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)

2 should be 

minimal

− Goal: The y-values that are computed with the linear equation should 

(squared and in total) deviate as little as possible from the measured 

values.
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Construction
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− SSE 

𝐹 𝑎, 𝑏 = σ𝑖=1
𝑛 (𝑓 𝑥 − 𝑦𝑖)

2 = σ𝑖=1
𝑛 (𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)

2

is minimal if the partial derivatives w.r.t. 𝑎 and 𝑏 are 0

− That is:

𝜕𝐹

𝜕𝑎
=෍

𝑖=1

𝑛

2 𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖 = 0

𝜕𝐹

𝜕𝑏
=෍

𝑖=1

𝑛

2 𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖 𝑥𝑖 = 0
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Construction
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− As a consequence, we obtain the so-called normal equations

𝑛𝑎 + ෍

𝑖=1

𝑛

𝑥𝑖 𝑏 = ෍

𝑖=1

𝑛

𝑦𝑖

෍

𝑖=1

𝑛

𝑥𝑖 𝑎 + ෍

𝑖=1

𝑛

𝑥𝑖
2 𝑏 = ෍

𝑖=1

𝑛

𝑥𝑖 𝑦𝑖

− that is, a two-equation system with two unknowns a and b which has a 

unique solution (if at least two different x-values exist). 

− ➔ A unique solution exists for 𝑎 and 𝑏
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Example – Regression Line
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− Example: data

− Resulting regression line: 𝑦 =
3

4
+

7

12
𝑥

x 1 2 3 4 5 6 7 8

y 1 3 2 3 4 3 5 6
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Least Squares and MLE

18

− The straight line determined in this way is called regression line for the 

data set D.

− A regression line can be interpreted as a maximum likelihood 

estimator (MLE):

− Assumption: The data generation process can be described by the 

model

𝑓 𝑥 = 𝑎 + 𝑏𝑥 + 𝜉

− where 𝜉 is a normally distributed random variable with mean 0 and 

(unknown) variance 𝜎2.

− The parameters that minimize the sum of squared deviations (in y-

direction) from the data points maximizes the probability of the data 

given this model class.
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Least Squares and MLE
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− Therefore:

𝑓 𝑦 𝑥 =
1

2𝜋𝜎2
exp −

𝑦 − 𝑎 + 𝑏𝑥
2

2𝜎2

− Leading to the likelihood function:

𝐿 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ; 𝑎, 𝑏, 𝜎2 =ෑ

𝑖=1

𝑛

𝑓 𝑦𝑖 𝑥𝑖

=ෑ

𝑖=1

𝑛
1

2𝜋𝜎2
exp −

𝑦𝑖 − 𝑎 + 𝑏𝑥𝑖
2

2𝜎2
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Least Squares and MLE
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− To simplify the calculation of the derivatives to find the maximum, we compute 

the logarithm.

− After computing the derivatives w.r.t. the parameters a and b, we realize that 

maximizing the likelihood function is equivalent to minimizing

𝐹 𝑎, 𝑏 =෍

𝑖=1

𝑛

(𝑓 𝑥 − 𝑦𝑖)
2 =෍

𝑖=1

𝑛

(𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)
2

ln 𝐿 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ; 𝑎, 𝑏, 𝜎2

= ln ෑ

𝑖=1

𝑛
1

2𝜋𝜎2
exp −

𝑦𝑖 − 𝑎 + 𝑏𝑥𝑖
2

2𝜎2

=෍

𝑖=1

𝑛

ln
1

2𝜋𝜎2
−

1

2𝜎2
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑎 + 𝑏𝑥𝑖
2
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Other Regressions
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Polynomial Regression

22

− Least square method can be extended to polynomials of degree 𝑚

− Find 𝑎𝑖 ’s that minimize the error function

− We form the partial derivatives of this function w.r.t. the parameters 

𝑎𝑘 , 𝑘 = 1, 2,⋯ ,𝑚, and equate them to zero

𝑦 = 𝑝 𝑥 = 𝑎0 + 𝑎1 + 𝑎2𝑥
2 +⋯+ 𝑎𝑚𝑥

𝑚

𝐹 𝑎0, 𝑎1, … , 𝑎𝑚 =෍

𝑖=1

𝑛

(𝑝 𝑥 − 𝑦𝑖)
2

=෍

𝑖=1

𝑛

(𝑎0 + 𝑎1 + 𝑎2𝑥
2 +⋯+ 𝑎𝑚𝑥

𝑚 − 𝑦𝑖)
2
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Multivariate Regression
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− Given a dataset     𝐷 = 𝒙𝑖 , 𝑦𝑖 | 𝑖 = 1,… , 𝑛 with 𝑛 tuples
− Input vector 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚) with multiple regressors

− And corresponding response 𝑦𝑖

− For which we want to determine the linear regression function

− Examples:
− Price of a house (𝑦) depending on its size (𝑥1) and age (𝑥2)

− Ice cream consumption (𝑦) based on the temperature (𝑥1), the price (𝑥2), and the family income (𝑥3)

− Electric consumption (𝑦) based on the number of flats with one (𝑥1), two (𝑥2), three (𝑥3) and four or 

more persons (𝑥4) living in them

𝑦 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑚 = 𝑎0 +෍

𝑘=1

𝑚

𝑎𝑘𝑥𝑘
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Multivariate Regression
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− The cost function can be written as:

𝐹 𝑎0, 𝑎1, … , 𝑎𝑚 =෍

𝑖=1

𝑛

𝑓 𝒙𝑖 − 𝑦𝑖
2

=෍

𝑖=1

𝑛

𝑎0 + 𝑎1𝑥𝑖1 + 𝑎2𝑥𝑖2 +⋯+ 𝑎𝑚𝑥𝑖𝑚 − 𝑦𝑖
2
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Multivariate Regression
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− It is convenient to write in the matrix form: 

𝐹 𝒂 = (𝑿𝒂 − 𝒚)𝑇(𝑿𝒂 − 𝒚)

− where

𝒂 =

𝑎0
𝑎1
⋮
𝑎𝑚

𝑿 =

1 𝑥11
1 𝑥21

⋯ 𝑥1𝑚
⋯ 𝑥2𝑚

⋮ ⋮
1 𝑥𝑛1

⋱ ⋮
⋯ 𝑥𝑛𝑚

=

𝒙1
𝒙2
⋮
𝒙𝑛

𝒚 =

𝑦1
𝑦2
⋮
𝑦𝑛

𝒙𝑖 = 1, 𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑚
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Multivariate Regression
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− Find the minimum with the differential operator 𝛻𝒂

− And find the solution to the equation

− From which we obtain the system of normal equations:

𝑿𝑇𝑿𝒂 = 𝑿𝑇𝒚

𝛻𝒂 =
𝜕

𝜕𝑎0
,
𝜕

𝜕𝑎1
, ⋯ ,

𝜕

𝜕𝑎𝑚

0 = 𝛻𝒂𝐹 𝒂 = 𝛻𝒂(𝑿𝒂 − 𝒚)𝑇(𝑿𝒂 − 𝒚)

= 𝛻𝒂 𝑿𝒂 − 𝒚
𝑇
𝑿𝒂 − 𝒚 + (𝑿𝒂 − 𝒚)𝑇 𝛻𝒂(𝑿𝒂 − 𝒚)

𝑻

= 𝛻𝒂 𝑿𝒂 − 𝒚
𝑇
𝑿𝒂− 𝒚 + 𝛻𝒂 𝑿𝒂 − 𝒚

𝑇
𝑿𝒂− 𝒚

= 2𝑿𝑇 𝑿𝒂− 𝒚 = 2𝑿𝑇𝑿𝒂 − 2𝑿𝑇𝒚
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Multivariate Regression
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𝑿𝑇𝑿𝒂 = 𝑿𝑇𝒚

− The system is uniquely solvable iff 𝑿𝑇𝑿 is invertible (nonsingular)

− In this case we have:

𝒂 = 𝑿𝑇𝑿 −1 𝑿𝑇𝒚 = 𝑿+𝒚

− Moore-Penrose pseudo-inverse

− The expression 𝑿𝑇𝑿 −1 𝑿𝑇 = 𝑿+ is also known as the (Moore-Penrose) pseudo-

inverse of the matrix 𝑿. 

− Pseudo-inverse matrices are used to compute the inverse of singular matrices.

− They provide a least square solution to a system of linear equations without a unique 

solution.
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Regression vs. Time Series Analysis

− Regression

− Targets y & set of input 

features

− No time order information

− Describing the relationship 

between the target and input 

features

− Model ➔ interpolation

− Time series analysis

− Time ordered sequence of 

observations

− Predicting future observations 

from:

− Past values in time series

− Accompanying time series

− Model ➔ extrapolation
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Nonlinear Regression
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Solving equations based on partial derivatives of the cost function does 

not work in some cases with:

− Non-differentiable cost function (absolute value, maximum, etc)

− No analytical solution for equations

Guide to Intelligent Data Science Second Edition, 2020



Nonlinear Regression

30

Example

− Nonlinear model 𝑦 = 𝑎𝑒𝑏𝑥 (radioactive decay, growth of bacteria, …)

− Then the cost function and their partial derivatives are

Possible solutions:

− Iterative methods (e.g., gradient descent)

− Transformation of the regression function

𝐹 𝑎, 𝑏 =෍
𝑖=1

𝑛

𝑎𝑒𝑏𝑥𝑖 − 𝑦𝑖
2

𝜕𝐹

𝜕𝑎
= 2෍

𝑖=1

𝑛

𝑎𝑒𝑏𝑥𝑖 − 𝑦𝑖 𝑒
𝑏𝑥𝑖

𝜕𝐹

𝜕𝑏
= 2෍

𝑖=1

𝑛

𝑎𝑒𝑏𝑥𝑖 − 𝑦𝑖 𝑎𝑥𝑖𝑒
𝑏𝑥𝑖
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Logistic Regression
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Transformation

32

− Nonlinear regression functions can be transformed, and solved as a 

linear regression

− Example:

− Can be transformed by taking the natural log of the equation

− Notice the sum of squared error is minimized only in the log-transformed 

space (i.e., 𝑥′ = ln 𝑥, 𝑦′ = ln𝑦)

𝑦 = 𝑎𝑥𝑏

ln 𝑦 = ln 𝑎 + 𝑏 ∙ ln 𝑥
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Logit Transformation

33

Let’s consider another transformation

− Logistic functions describe limited growth processes, and defined as

− The inverse of this function (logit function) produces a linear model

𝑦 =
𝑦𝑚𝑎𝑥

1 + 𝑒𝑎+𝑏𝑥

ln
𝑦𝑚𝑎𝑥 − 𝑦

𝑦
= 𝑎 + 𝑏𝑥

1

𝑦
=
1 + 𝑒𝑎+𝑏𝑥

𝑦𝑚𝑎𝑥

𝑦𝑚𝑎𝑥 − 𝑦

𝑦
= 𝑒𝑎+𝑏𝑥
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Logit Transformation

34

− Logit function

− We only need to transform the data points according to the left-hand side of the 

equation.

− Fitting the data to this model is often referred as logistic regression

ln
𝑦𝑚𝑎𝑥 − 𝑦

𝑦
= 𝑎 + 𝑏𝑥
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Example – Logit Transformation
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− The data 

− Can be transformed with a logit-transformation, 

and the linear regression line is fitted to 

𝑧 = 𝑙𝑜𝑔𝑖𝑡 𝑦 = 4.133 − 1.3775𝑥

− We can transform 𝑦 back with the logistic 

function, and obtain the logistic regression curve 

𝑦 =
6

1 + 𝑒4.133−1.3775𝑥

x 1 2 3 4 5

y 0.4 1.0 3.0 5.0 5.6
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Model vs. Black-box

36

− When the principal functional dependency between the dependent 

variable 𝑌 and the predictor variables 𝑥1, . . . , 𝑥𝑘 is known, an explicit 

parameterized (possibly nonlinear) regression function can be specified.

− The coefficients 𝑎𝑖 can be interpreted as weighting factors, at least 

when the predictor variables 𝑥1, . . . , 𝑥𝑘 have been normalised.

− They also provide information of a positive or negative correlation of the 

predictor variables with the dependent variable 𝑌 .

− Usually, complex regression functions yield black-box models, which 

might provide a good approximation of the data, but do not admit a 

useful interpretation (of the coefficients).
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Generalization

37

− Considering a data set as a collection of examples, describing the 

dependency between the predictor variables and the dependent 

variable, the regression function should “learn” this dependency from 

the data 

− The same function should also be able to generalize it to make correct 

predictions on new data.

− The regression function “learns” a description of the data, not of the 

structure of the data.

− The prediction using a complex regression function can be worse than 

the prediction using a simpler regression function (overfitting).
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Robust Regression
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Robust Regression

39

− Ordinary regression – sensitive to outliers

− Solution: robust regression

− Let’s re-write the cost function as

− For the least square method, the function 𝜌 is a square function 

− (i.e., 𝜌 𝑒 = 𝑒2)

𝐹 𝒂 = 𝑿𝒂 − 𝒚 𝑇 𝑿𝒂 − 𝒚 =෍

𝑖=1

𝑛

𝜌 𝑒𝑖 =෍

𝑖=1

𝑛

𝜌 𝒙𝑖
𝑇𝒂 − 𝑦𝑖
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Robust Regression

40

− More generally, the 𝜌 function can be any function satisfying the 

following:

− Parameter estimation with a cost function with a 𝜌 function satisfying 

these conditions are called an M-estimator.

𝜌 𝑒 ≥ 0,

𝜌 0 = 0,

𝜌 𝑒 = 𝜌 −𝑒 ,

𝜌 𝑒𝑖 ≥ 𝜌 𝑒𝑗 if 𝑒𝑖 ≥ 𝑒𝑗
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M-Estimators

41

− Calculate the derivatives w.r.t. the parameters 𝑎𝑖 in

− We find the solution to the system of linear equations

− Where 𝜓 = 𝜌′. If we define 𝑤(𝑒) = 𝜓(𝑒)/𝑒 and 𝑤𝑖 = 𝑤 𝑒𝑖 ,

− The solution is the same as the standard least squares problem with 

weights σ𝑖=1
𝑛 𝑤𝑖𝑒𝑖

2

෍

𝑖=1

𝑛

𝜌 𝑒𝑖 =෍

𝑖=1

𝑛

𝜌 𝒙𝑖
𝑇𝒂 − 𝑦𝑖

෍

𝑖=1

𝑛

𝜓𝑖 𝒙𝑖
𝑇𝒂 − 𝑦𝑖 𝒙𝑖

𝑇 = 0

෍

𝑖=1

𝑛
𝜓𝑖 𝒙𝑖

𝑇𝒂 − 𝑦𝑖
𝑒𝑖

∙ 𝑒𝑖 ∙ 𝒙𝑖
𝑇 =෍

𝑖=1

𝑛

𝑤𝑖𝑒𝑖
2𝒙𝑖

𝑇 = 0
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M-Estimators

42

Problems in finding the solution:

− The weights 𝑤𝑖 depend on the errors 𝑒𝑖

− The errors 𝑒𝑖 depend on the weights 𝑤𝑖

Strategy: alternating optimization

1. Choose an initial solution 𝒂(0), (e.g., standard least squares solution) and set 

all weights to 𝑤𝑖 = 1

2. At step 𝑡, calculate the residuals 𝑒(𝑡−1) and the corresponding weights 

𝑤(𝑡−1) = 𝑤(𝑒(𝑡−1))

3. Compute the solution to the weighted least squared problem

− Where 𝑾 is a diagonal matrix with weights 𝑤𝑖 on the main diagonal

𝒂(0) = 𝑿𝑇𝑾(𝑡−1)𝑿
−1

𝑿𝑇𝑾(𝑡−1)𝒚
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Methods of Robust Regression

43

− Where parameter k needs to be chosen for Huber and Tukey’s bisquare

Method 𝝆 𝒆

Least squares 𝑒2

Huber 1

2
𝑒2 𝑖𝑓 𝑒 ≤ 𝑘,

𝑘 𝑒 −
1

2
𝑘2 𝑖𝑓 𝑒 > 𝑘

Tukey’s 
bisquare

𝑘2

6
(1 − 1 −

𝑒

𝑘

2 3

) 𝑖𝑓 𝑒 ≤ 𝑘,

𝑘2

6
𝑖𝑓 𝑒 > 𝑘

Guide to Intelligent Data Science Second Edition, 2020



Least Squares

44

− The error measure 𝜌 increases in a quadratic manner with increasing 

deviation

➔ Extreme outliers have full influence
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Huber (k=1.5)

45

− The error measure 𝜌 switches from quadratic (for small errors) to linear 

(for large errors)

➔ Only data points with small error have full influence
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Tukey’s Bisquare (k=4.5)

46

− The error measure 𝜌 does not increase for large errors

➔ Weights of extreme outliers drop to zero
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Least Squares vs. Robust Regression

47

− An extreme outlier influences the regression line 

in least squares

− The influence of the outlier is attenuated in 

robust regression

− Reduced weight is apparent in a plot of 

regression weights in robust regression
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Regression for Classification
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Regression and nominal attributes

49

If:

− most of the predictor variables are numerical,

− and the few nominal attributes have small domains, and

− the data set is sufficiently large and covers all combinations.

then we can construct a regression function for each possible combination of the 

values of the nominal attributes.

Example:

Possible solution to predict weight: four regression functions for 

(F,Yes),(F,No),(M,Yes),(M,No) using only age and height as predictor variables.

Attribute Type / Domain

sex F/M

vegetarian yes/no

Age numerical

Height numerical

Weight numerical
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Regression and nominal attributes

50

Alternative approach: 

− Encode the nominal attributes as numerical attributes.

− Binary attributes can be encoded as 0/1 or −1/1

− For nominal attributes with more than two values, a 0/1 or −1/1 

numerical attribute should be introduced for each possible value of the 

nominal attribute (1-of-n coding).

− Do not encode nominal attributes with more than two values in one 

numerical attribute, unless the nominal attribute is actually ordinal.
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Classification as Regression

51

− A two-class classification problem (classes 0 vs. 1) can be viewed as a 

regression problem

Challenges:

− A regression function usually cannot produce outcomes 0 or 1

− The cost functions aim to reduce the numerical error (measured as 

squared residuals, for example), not misclassification

Solution:

− A regression model for the probability of belonging to a certain class

− A probability cut-off (e.g, probability > 0.5) can be used for classification

Guide to Intelligent Data Science Second Edition, 2020



Classification as Regression: Example

52

− 1000 data objects, 500 belonging to class 0, 500 to class 1.

− Regression function 𝑓 yields 0.1 for all data from class 0 and 0.9 for all 

data from class 1.

− Regression function 𝑔 always yields the exact and correct values 0 and 

1, except for 9 data objects where it yields 1 instead of 0 and vice versa.

− From the viewpoint of regression 𝑔 is better than 𝑓 (smaller MSE), from 

the viewpoint of misclassifications 𝑓 should be preferred.

Regression
function

Mis-
classifications

MSE

f 0 0.01

g 9 0.009
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Logistic Regression: Two-class problem

53

− Two-Class Problem: 

− If 𝑌 belongs to one of two classes 𝑐1, 𝑐2 , then we can model the 

probability for one class only

− Given: A set of data points 𝒙1, . . , 𝒙𝑛 each assigned to one of the two 

classes 𝑐1 and 𝑐2.

− Desired: Train a function, which gives us the probability 𝑝(𝒙) for each 

class (0 and 1) based on the input features for the given dataset.

𝑃 𝑌 = 𝑐1 | 𝑋 = 𝒙 = 𝑝(𝒙)

𝑃 𝑌 = 𝑐2 | 𝑋 = 𝒙 = 1 − 𝑝(𝒙)
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Linear Regression vs. Logistic Regression

54

Linear Regression Logistic Regression

Target variable y Numeric 𝑦 ∈ (−∞,∞)/[𝑎, 𝑏] Nominal 𝑦 ∈ 0, 1, 2, 3 /{𝑟𝑒𝑑, 𝑤ℎ𝑖𝑡𝑒}

Functional relationship 
between features and…

… target value 𝑦

𝑦 = 𝑓(𝑥1, … , 𝑥𝑛, 𝛽0, … , 𝛽𝑛)
𝑦 = 𝛽0+𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛

… class probability P (y = class i)

𝑃 𝑦 = 𝑐𝑖 = 𝑓 𝑥1, … , 𝑥𝑛, 𝛽0, … , 𝛽𝑛

Goal: Find the regression coefficients 𝛽0, … , 𝛽𝑛
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− Result: 𝑝 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 = −0.84 + 0.04 𝑎𝑔𝑒

− Problem:

− 𝑝 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 < 0 for age = 20 and 𝑝 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 > 1 𝑓𝑜𝑟 𝑎𝑔𝑒 = 50

Example where Linear Regression Fails
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Let’s Find Out How Binary Logistic Regression Works!

56

Probability function given 𝑥1 = 2

𝑃 𝑦 = 1 = 𝑓 𝑥1, 𝑥2; 𝛽0, 𝛽1, 𝛽2 ≔
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2)

Feature space
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Logistic Regression: two-class problem

57

− Approach: Describe the probability p by the logistic function:

− By applying the logit-transformation, we have a multivariate regression 

problem

− that is, a multilinear regression problem, which can be solved with the 

introduced techniques.

𝑝 𝒙 =
1

1 + exp(𝑎0 + σ𝑗=1
𝑚 𝑎𝑗𝑥𝑗)

ln
1 − 𝑝 𝒙

𝑝 𝒙
= 𝑎0 +෍

𝑗=1

𝑚

𝑎𝑗𝑥𝑗
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Logistic Regression: Two-class problem

58

How do we determine class probability 𝑝 𝒙 for this regression problem?

− If we have sufficiently many realizations for all possible data points

➔ 𝑝 𝒙 can be estimated by the relative frequencies of the classes

− If there aren’t many realizations, we rely on kernel estimation
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Kernel Estimation

59

− Idea: Define an “influence function” (kernel), which describes how 

strongly a data point influences the probability estimate for neighboring

points. 

− The “influence” is stronger from a closer point, weaker for a distant point

− The “influence” is modeled by a kernel function

− Example: Gaussian kernel

− Where 𝒚 is a neighbor of 𝒙

− Higher (or lower) influence if 𝒙 and 𝒚 are closer (or farther)

− Variance 𝜎2 has to be chosen by the user.

𝐾 𝒙, 𝒚 =
1

2𝜋𝜎2
𝑚
2

exp −
(𝒙 − 𝒚)𝑇(𝒙 − 𝒚)

2𝜎2
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Kernel Estimation

60

− Kernel estimation for a two-class problem

➔ 𝑝(𝒙) is estimated as the sum of 𝑘(∙,∙) between 𝒙 and all other data 

points belonging to class 𝑐1

Ƹ𝑝 𝒙 =
σ𝑖=1
𝑛 𝑐 𝒙𝑖 𝐾(𝒙, 𝒙𝑖)

σ𝑖=1
𝑛 𝐾(𝒙, 𝒙𝑖)

𝑐 𝒙𝑖 = ቊ
1
0

if 𝒙𝑖 belongs to class 𝑐1
otherwise
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Example – Kernel Estimation

61

− If red ≡ 𝑐1, we calculate the sum of kernel 

functions between 𝒙 and all red neighborsData
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Example – Kernel Estimation

62

− If green≡ 𝑐1, we calculate the sum of kernel 

functions between 𝒙 and all green neighborsData
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Regularization in Logistic Regression

63

− Is there a way to handle overfitting?

− If data are linearly separable, coefficients becomes extremely large

➔ Overfitting

𝑃 𝑦 = 1 =
1

1 + 𝑒−𝑥
𝑃 𝑦 = 1 =

1

1 + 𝑒−5𝑥
𝑃 𝑦 = 1 =

1

1 + 𝑒−100𝑥
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Regularization in Logistic Regression

64

− The parameters in a logistic regression model is determined by 

maximizing the likelihood function

− Or equivalently, minimizing the (negative) log-likelihood function

− To avoid overfitting: add regularization by penalizing large coefficients

− Estimate of coefficient vector 𝛽 obtained by:

෠β = min
𝛽

−𝐿𝐿 𝛽, 𝑦, 𝒙 + 𝜆 𝑅 𝛽

− The choice of the regularization term 𝑅(𝛽): Gauss, Laplace, L1, L2, 

etc.
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Regularization Example

65

− Internet Advertisement Data – UCI Machine Learning Repository

− More features (680) than samples (n=120)

➔ Prone to overfitting

− Logistic regression with no regularization (uniform) (blue), Laplace 

(orange), and Gauss (green)
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Regularization Example

66

− Without regularization ➔ large regression coefficients
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Interpretation of the Coefficients

67

− Interpretation of the sign
− 𝛽𝑖 > 0 : Bigger 𝑥𝑖 lead to higher probability

− 𝛽𝑖 < 0 : Bigger 𝑥𝑖 lead to smaller probability
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Interpretation of the p Value

68

− p- value < 𝛼: input feature has a significant impact on the dependent 

variable.
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Summary

69

Pros:

− Strong mathematical foundation

− Simple to calculate and to understand (for a moderate number of 

dimensions)

− High predictive accuracy

Cons:

− Many dependencies are non-linear

− Global model does not adapt to locally different data distributions
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Summary

70

− Logistic regression is used for classification problems

− The regression coefficients are calculated by maximizing the likelihood 

function, which has no closed form solution, hence iterative methods are 

used.

− Regularization can be used to avoid overfitting.

− The p-value shows us whether an independent variable is significant
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Practical Example with 

KNIME Analytics Platform
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Logistic Regression

72

Training and application of a logistic regression model. Notice the Missing Value 

node to fix possible missing values in the data
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Thank you
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