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Summary of this lesson

“What people call AI is no more than finding answers to questions we 

know to ask. Real AI is answering questions we haven't dreamed of yet”

-Tom Golway

How deep can we dig in AI?

*This lesson refers to chapter 9 of the GIDS book
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Content of this lesson

− Recurrent Neural Networks (RNNs)

− Long Short Term Memories (LSTMs)

− Convolutional Neural Networks (CNNs)

− Generative Adversarial Networks (GANs)
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Datasets

− Datasets used: 
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Deep Learning

− Deep Learning is the recent evolution of Neural Networks

− It covers:

− Feedforward networks with many hidden layers (deep ☺)

− New paradigms, like LSTMs in Recurrent Neural Networks, suitable for time series 

analysis

− New topological layers, like convolutional and pooling layers, mainly for image 

processing

− New architectures as in Generative Adversarial Networks (GANs)

− ...

− Improvements are mainly due to:

− Increased computational power for faster calculations, like GPUs

− Parallel Computation
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Recurrent Neural Networks 

(RNNs)
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What are Recurrent Neural Networks?

− Recurrent Neural Networks (RNNs) are a family of neural networks 

suitable for processing of sequential data

− RNNs include auto and backward connections

− RNNs are used for all sorts of tasks:

− Language modeling / Text generation

− Text classification

− Neural machine translation

− Image captioning

− Speech to text

− Numerical time series data, e.g. sensor data

− Time series analysis

− …
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Why do we need RNNs for Sequential Data?

− Goal: Translation from German to English

“Ich mag Schokolade” 

=> “I like chocolate”

− Option one: Use feed forward network to 

translate word by word

− But what happens with this question?

“Mag ich Schokolade?” 

=> “Do I like chocolate?”

Input x Output y

Ich I

mag like

Schokolade chocolate

𝑥 ∑ σ 𝑦

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ
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Why do we need RNNs for Sequential Data?

− Problems with FFNN: 

− Each time step is completely independent

− For translations we need context

− More general: we need a network that remembers 

inputs from the past

− Handle variable sequence length

− Solution: Recurrent Neural Networks

Input x Output y

Mag Like

Ich I

Schokolade chocolate

𝑥 ∑ σ 𝑦

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ
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From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑ σ

∑ σ

∑ σ

∑ σ

𝒙

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐 𝑾𝒚

𝟑

∑ σ 𝑦1

𝑦2

𝒚
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From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑ σ

∑ σ

∑ σ

𝒙

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑦1

𝑦2

𝒚
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From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑

𝑡𝑎
𝑛
ℎ

∑

𝑡𝑎
𝑛
ℎ

∑

𝑡𝑎
𝑛
ℎ

𝒙

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑦1

𝑦2

𝒚
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Unrolling of a RNN over time

𝒙t

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝒚𝑡

𝒙t+1

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝒚𝑡+1

𝒙t+2

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝒚𝑡+2

𝒙t+3

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝒚𝑡+3

𝑪t−1 𝑪t 𝑪t+1 𝑪t+2 𝑪t+3

time t
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From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑ σ

∑ σ

∑ σ

∑ σ

𝒙

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐 𝑾𝒚

𝟑

∑ σ 𝑦1

𝑦2

𝒚

− A Recurrent Neural Network is a FFNN with auto and/or backward 

connections

− Recurrent connections introduce the concept of time in FFNNs
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From Feed Forward to Recurrent Neural Networks

𝑥1(t)

𝑥2(t)

∑ σ

∑ σ

∑ σ

∑ σ
𝒙(𝒕)

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐 𝑾𝒚

𝟑

∑ σ 𝑦1(t)

𝒚(𝒕)

𝒚(𝒕 − 𝟏)

𝑦2(t)

𝑦1(t−1)

− A Recurrent Neural Network is a FFNN with auto and/or backward 

connections

− Recurrent connections introduce the concept of time in FFNNs
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How can we represent a RNN over time?

=

− At every time t, FFNN A has two inputs: 

− x(t) 

− some shape of y(t-1) -> state of network A: C(t-1)

− The recurrent network can then be unrolled over time around A

16



Guide to Intelligent Data Science Second Edition, 2020

Unrolling of a RNN over time

=

The unrolled version of the original network in m intermediate steps becomes a 

FFNN and can be trained with BackPropagation: Back-Propagation Through 

Time (BPTT).
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Summarizing: RNNs and BPTT

− Neural network architectures with recurring connections on some units 

are named Recurrent Neural Networks (RNNs).

− Adding a recurrent connection to one unit might store information about 

past inputs in the evolving status of the unit. 

− An easy trick to represent the recurrent network is to unroll it into m

copies of the feedforward internal block “A”, each with their set of static 

weight matrix W. Each copy of “A” receives inputs X(t) and C(t-1) and 

produces output y(t).

− A modified version of the Back-Propagation algorithm is used to train 

RNNs: Back-Propagation Through Time (BPTT).
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Long Short Term Memory

19



Guide to Intelligent Data Science Second Edition, 2020

Simple Recurrent Unit

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

∑

𝑡𝑎
𝑛
ℎ𝒙(𝒕) 𝒉(𝒕)

The simplest possible 

recurrent unit is a 

single layer with an 

auto-connection.

𝑪 𝒕 = 𝒉(𝒕)
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Limitations of Layers with Simple Recurrent Units

The “memory” of simple RNNs is sometimes too limited to be useful:

− “Cars drive on the ” (road)

− “I love the beach. 

My favorite sound is the crashing of the “ (cars? glass? waves?)

− Sometimes we need to go back deeper in time  
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LSTM = Long Short Term Memory

Special type of unit with three gates

− Forget gate

− Input gate

− Output gate

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

22
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This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate

LSTM = Long Short Term Memory

Fo
rg

et
 g

at
e

In
p

u
t 

ga
te

O
u

tp
u

t 
ga

te

𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)
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This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate

LSTM = Forget Gate

Fo
rg

et
 g

at
e

In
p

u
t 

ga
te

O
u

tp
u

t 
ga

te

𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)
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LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how 

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕)

𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗
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𝒇(𝒕)

𝑪(𝒕 − 𝟏)

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how 

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕) x

𝑪𝑓(𝒕)
𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗
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𝒇(𝒕)

𝑪(𝒕 − 𝟏)

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how 

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕) x

𝑪𝑓(𝒕)
𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗
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𝒇(𝒕)

𝑪(𝒕 − 𝟏)

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how 

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕)

𝝈

x

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪𝑓(𝒕)
𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗
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𝒇(𝒕)

𝑪(𝒕 − 𝟏)

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how 

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕)

𝝈

x

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪𝑓(𝒕)
𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗

𝑓𝑗 𝑡 = 𝜎 𝑊𝑓 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑓

𝑪𝑓(𝒕) = 𝒇 𝑡 ∗ 𝑪(𝑡 − 1)
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This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate

LSTM = Input Gate
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𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)
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LSTM: Input Gate

𝒉(𝒕 − 𝟏) 𝒙(𝒕) 𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡

𝑪𝑖(𝒕)

1
Create new cell state

candidate

2
Filter cell state

candidate

𝒊(𝒕)

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much 

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .
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LSTM: Input Gate – create new state candidate

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much 

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡 𝒊(𝒕)

𝑪𝑖(𝒕)

2
Filter cell state

candidate

Notice 
tanh()
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LSTM: Input Gate – inject input

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much 

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡 𝒊(𝒕)

𝑪𝑖(𝒕)

2
Filter cell state

candidate

Notice 
tanh()

Same as 
for the 

forget gate
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LSTM: Input Gate – inject input

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much 

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡

ignore (0)inject (1)

𝒊(𝒕)

𝑪𝑖(𝒕)

𝑥𝑗ℎ𝑗

𝑖𝑗
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LSTM: Input Gate

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much 

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡
ignore (0)inject (1)

𝒊(𝒕)

𝑥𝑗ℎ𝑗

𝑖𝑗

𝑖𝑗 𝑡 = 𝜎 𝑊𝑖 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑖

𝑪𝑖 𝑡 = 𝒊 𝒕 ∗ ෩𝑪 𝑡

ሚ𝐶𝑗 𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝐶 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝐶
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LSTM: Input Gate

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much 

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒊(𝒕) 𝑖𝑗 𝑡 = 𝜎 𝑊𝑖 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑖

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

෩𝑪 𝑡

𝑪𝑖 𝑡 = 𝒊 𝒕 ∗ ෩𝑪 𝑡

ሚ𝐶𝑗 𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝐶 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝐶
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LSTM: Input Gate

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much 

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒊(𝒕) 𝑖𝑗 𝑡 = 𝜎 𝑊𝑖 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑖

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

෩𝑪 𝑡

𝑪𝑖 𝑡 = 𝒊 𝒕 ∗ ෩𝑪 𝑡

ሚ𝐶𝑗 𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝐶 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝐶

𝒕𝒂𝒏𝒉

𝒉(𝒕 − 𝟏) 𝒙(𝒕)
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LSTM = Input Gate
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𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

𝑪 𝑡 = 𝑪𝑓 𝑡 + 𝑪𝑖 𝑡 = 𝒇 𝑡 ∗ 𝑪 𝑡 − 1 + 𝒊 𝑡 ∗ ෩𝑪 𝑡

This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate
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LSTM = Output Gate

Fo
rg
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te

𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate
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LSTM: Output Gate – input inject into status

− Output Gate is trained to output a reasonable result.

− At time t, output gate decides which parts of status 𝑪 𝑡 (and how much 
of it) will be output, given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝑪(𝒕) 𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝒐𝒖𝒕 𝑡

𝒉(𝒕)

1
Create output 

candidate from C(t)

2
Filter output candidate

𝒐(𝒕) Sigma filter
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LSTM: Input Gate – input inject into status

− Output Gate is trained to output a reasonable result.

− At time t, output gate decides which parts of status 𝑪 𝑡 (and how much 
of it) will be output, given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒐𝒖𝒕 𝑡

1
Create output 

candidate from C(t)

𝒐(𝒕) 𝑜𝑗 𝑡 = 𝜎 𝑊𝑜 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑜

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

𝒉 𝑡 = 𝒐 𝑡 ∗ 𝑪 𝑡

𝑪(𝒕)
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𝑪(𝒕)

LSTM: Input Gate – prepare output candidate

− Output Gate is trained to output a reasonable result.

− At time t, output gate decides which parts of status 𝑪 𝑡 (and how much 
of it) will be output, given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒐𝒖𝒕 𝑡

1
Create output 

candidate from C(t)

𝒐(𝒕) 𝑜𝑗 𝑡 = 𝜎 𝑊𝑜 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑜

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

𝒉 𝑡 = 𝒐 𝑡 ∗ 𝑪 𝑡tanh() 
filter
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𝑪(𝒕)

LSTM: Input Gate – prepare output candidate

− Output Gate is trained to output a reasonable result.

− At time t, output gate decides which parts of status 𝑪 𝑡 (and how much 
of it) will be output, given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒐𝒖𝒕 𝑡

𝒐(𝒕) 𝑜𝑗 𝑡 = 𝜎 𝑊𝑜 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑜

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

𝒉 𝑡 = 𝒐 𝑡 ∗ 𝑡𝑎𝑛ℎ 𝑪(𝑡)

𝑡𝑎𝑛ℎ 𝐶(𝑡)

𝒕𝒂𝒏𝒉
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LSTM = Long Short Term Memory

Forget gate Input gate Output gateSpecial type of unit with three gates:

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Different Network-Structures and Applications

Many to Many

A A A

<sos>

A

like sailing 

sailing like I 

I 

<eos>

Language model Neural machine translation

E E E

like sailing I 

D D D

Ich gehe gerne

D

segeln

Ich gehe gerne
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Different Network-Structures and Applications

A A A A

I

A

like to go sailing 

English 

Language classification

Text classification

One to many

A A A AA

Couple on sailing a lake

Image captioning

Many to one
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Neural Network: Code-free Example
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Neural Network: Code-free Example
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Convolutional Neural 

Networks (CNNs)
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AlexNet & friends

− The big breakthrough in deep learning happened in 2012 with deep 

convolutional neural networks

− Here deep learning based AlexNet network won the ImageNet challenge with an 

unprecedented margin. 

− The top-five error rate of AlexNet was 15 percent, while the next best competitor 

ended up with 26 percent. 

− This victory kicked off the surge in deep learning networks.

https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/
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Convolutional Neural Networks - CNN

− Inspired by the organization of the visual cortex in the human brain, 

convolutional layers simulate the concept of a receptive field. 

− Individual neurons in the convolutional layer respond only when a 

specific area of the image (the visual field) is active. 

− An array of such neurons covers the entire image by responding to 

slightly overlapping separated areas of the input image. 

Image from: Wikimedia commons –

https://commons.wikimedia.org/wiki/File:Receptive_field_sizes_along_the_ventral_cortical_stream_in_the_primate.jpg
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Numerical Representation of a Black and White Image

0 0 0 0 0

0 0 0.5 1 0

0 0.5 1 0.5 0

0 1 0.5 0 0

0 0 0 0 0
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Numerical Representation of a Color Image

0.8 0.6 … 0.6 0.9

0.1 0 0.5 1 0

⋮ 0.5 1 0.5 0

0.8 1 0.5 0 0

0.6 0 0 0 0

0.1 0.5 … 0.5 0.2

0.2 0 0.5 1 0

⋮ 0.5 1 0.5 0

0.1 1 0.5 0 0

0.2 0 0 0 0

0.1 0.1 … 0.1 0.3

0.3 0.2 … 0.1 0.1

⋮ ⋮ … ⋮ ⋮

0.8 0.7 … 0.8 0.8

0.8 0.6 … 0.6 0.9

=
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Convolutional Neural Networks
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Convolutional Neural Networks - CNN

− The idea of convolution relies on a kernel K, a mask to overlap onto a 

portion P of the image pixels for the convolution operation. 

− From the product of the kernel K and the pixels in portion P we get a 

number, which will be the output of the first neuron in the convolutional 

layer.

− Then the kernel K moves n steps on the right and goes to cover another 

portion P of the image possibly slightly overlapping with the previous 

one; the output for the second unit of the convolutional layer is 

generated. 

− And so on till the whole image has been covered by the kernel K and 

convoluted into output values.

− The distance in number of pixels n between two adjacent portions P is 

called stride.
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Convolutional Neurons: Example
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Convolutional Neural Networks (CNN)

− Zero padding

− Artificially increases the input at the 

boundary

− Helps with preserving the spatial 

resolution and alignment

− Stride

− The jump the kernel makes when 

moving over the input

− Reduces the spatial resolution

Image from: https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-

eli5-way-3bd2b1164a53
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Pooling Layers

− Usually a number of convolutional layers are used.

− Each layer provides one further step in the process of extracting high-

level features from the input image (colors, edges, entities, …).

− Pooling layers are often used to reduce the spatial resolution in between

convolutional layers to

− Increase the receptive field of the following layers

− Reduce computational complexity

− Two types of Pooling

− Max Pooling returns the maximum value from the portion of the image covered by the

Kernel.

− Average Pooling returns the average of all values from the portion of the image

covered by the Kernel.
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Example Pooling
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Classification Layers

− After the sequence of convolutional + pooling layers, a classic feedforward

multilayer Perceptron network is applied to carry out the classification process.

− Successful examples of CNNs for image recognition : LeNet, AlexNet, VGGNet,

GoogLeNet, ResNet, ZFNet.
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CNN: Transfer Learning

− Training such networks is a long and complex process, requiring very
powerful machines.

− Instead of retraining a new network completely from scratch, we could
recycle existing networks, already built and trained by others on similar
data.

− This technique is called Transfer Learning.

− In Transfer Learning a model developed for a task is reused as the starting
point for another model on a second task.

− On top of a previously trained network we add one or more neural layers

− We freeze all or some of the previously trained layers

− And we retrain only the remaining part of the whole network on our new task
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Building CNNs with KNIME
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Generative-Adversarial 

Networks (GANs)
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GANs

− So far: RNNs and CNNs

− Recurrent Neural Networks (RNNs) and Convolutional Neural Networks

(CNNs) represent probably the biggest contribution of deep learning to

the field of neural networks.

− However, deep learning is responsible for other innovations, such as for

example Generative Adversarial Networks (GANs).
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Can You Tell Real from Fake?

Source: https://thispersondoesnotexist.com
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GAN: Generator

− GANs include two neural networks competing with each other: the

generator and the discriminator.

− A generator G is a transformation that transforms the input noise z into

a tensor – usually an image – x (x=G(z)). The generated image x is then

fed into the discriminator network D.

− The discriminator network D compares the real images in the training

set and the image generated by the generator network and produces an

output D(x), which is the probability that image x is real.
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GAN: Training

− Both generator and discriminator are trained using the backpropagation

and gradient descent.

− Both networks are trained in alternating steps, competing with each

other to improve themselves.

− The objective of the generator is to fool the discriminator i.e. 𝐷 𝐺 𝑧 = 1

− The objective of the discriminator is to output 𝐷 𝐺 𝑧 = 0 and 𝐷 𝑥𝑟𝑒𝑎𝑙 = 1

− The GAN model eventually converges and produces images that look

real.

− Given a training set, this technique learns to generate new data under

the same statistics as the training set.
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GAN: Architecture

Discriminator 
𝐷 𝑥; 𝜃𝑑

Generator 

𝐺 𝑧; 𝜃𝑔
𝑧 ~𝑝𝑧

෤𝑥 ~𝑝𝑔

𝑥 ~𝑝𝑑𝑎𝑡𝑎
dataset ෤𝑥 𝑖𝑠 𝑟𝑒𝑎𝑙?

𝑠 ෤𝑥
Score 

function
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GANs

− For example, a GAN trained on photographs can generate new photographs that

look at least superficially authentic to human observers, having many realistic

characteristics.

− GANs have been successfully applied to image tensors to create anime, human

figures, and even van Gogh-like masterpieces.

Image from: Pankaj Kishore, Towards data Science

https://towardsdatascience.com/art-of-generative-adversarial-networks-gan-62e96a21bc35
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Summary

− Recurrent Neural Networks (RNNs)

− Long Short Term Memories (LSTMs)

− Convolutional Neural Networks (CNNs)

− Generative Adversarial Networks (GANs)

70



Guide to Intelligent Data Science Second Edition, 2020

Practical Examples with 

KNIME Analytics Platform
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RNN Workflow: Text Generation
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CNN Workflow: Image Classification using MNIST

Extensions required:

− KNIME Image Processing

− KNIME Image Processing –

Deep Learning Extension
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Installing Extensions

− Install extension by going to File -> Install KNIME Extension 

or via Drag & Drop from the KNIME Community Hub
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Thank you
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