
Guide to Intelligent Data Science Second Edition, 2020

Deep

Learning

Guide to Intelligent Data Science Second Edition, 2020

Summary of this lesson

“What people call AI is no more than finding answers to questions we

know to ask. Real AI is answering questions we haven't dreamed of yet”

-Tom Golway

How deep can we dig in AI?

*This lesson refers to chapter 9 of the GIDS book

2

Guide to Intelligent Data Science Second Edition, 2020

Content of this lesson

− Recurrent Neural Networks (RNNs)

− Long Short Term Memories (LSTMs)

− Convolutional Neural Networks (CNNs)

− Generative Adversarial Networks (GANs)

3

Guide to Intelligent Data Science Second Edition, 2020

Datasets

− Datasets used:

4

Guide to Intelligent Data Science Second Edition, 2020

Deep Learning

− Deep Learning is the recent evolution of Neural Networks

− It covers:

− Feedforward networks with many hidden layers (deep ☺)

− New paradigms, like LSTMs in Recurrent Neural Networks, suitable for time series

analysis

− New topological layers, like convolutional and pooling layers, mainly for image

processing

− New architectures as in Generative Adversarial Networks (GANs)

− ...

− Improvements are mainly due to:

− Increased computational power for faster calculations, like GPUs

− Parallel Computation

5

Guide to Intelligent Data Science Second Edition, 2020

Recurrent Neural Networks

(RNNs)

6

Guide to Intelligent Data Science Second Edition, 2020

What are Recurrent Neural Networks?

− Recurrent Neural Networks (RNNs) are a family of neural networks

suitable for processing of sequential data

− RNNs include auto and backward connections

− RNNs are used for all sorts of tasks:

− Language modeling / Text generation

− Text classification

− Neural machine translation

− Image captioning

− Speech to text

− Numerical time series data, e.g. sensor data

− Time series analysis

− …

7

Guide to Intelligent Data Science Second Edition, 2020

Why do we need RNNs for Sequential Data?

− Goal: Translation from German to English

“Ich mag Schokolade”

=> “I like chocolate”

− Option one: Use feed forward network to

translate word by word

− But what happens with this question?

“Mag ich Schokolade?”

=> “Do I like chocolate?”

Input x Output y

Ich I

mag like

Schokolade chocolate

𝑥 ∑ σ 𝑦

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

8

Guide to Intelligent Data Science Second Edition, 2020

Why do we need RNNs for Sequential Data?

− Problems with FFNN:

− Each time step is completely independent

− For translations we need context

− More general: we need a network that remembers

inputs from the past

− Handle variable sequence length

− Solution: Recurrent Neural Networks

Input x Output y

Mag Like

Ich I

Schokolade chocolate

𝑥 ∑ σ 𝑦

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

∑ σ

9

Guide to Intelligent Data Science Second Edition, 2020

From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑ σ

∑ σ

∑ σ

∑ σ

𝒙

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐 𝑾𝒚

𝟑

∑ σ 𝑦1

𝑦2

𝒚

10

Guide to Intelligent Data Science Second Edition, 2020

From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑ σ

∑ σ

∑ σ

𝒙

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑦1

𝑦2

𝒚

11

Guide to Intelligent Data Science Second Edition, 2020

From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑

𝑡𝑎
𝑛
ℎ

∑

𝑡𝑎
𝑛
ℎ

∑

𝑡𝑎
𝑛
ℎ

𝒙

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑦1

𝑦2

𝒚

12

Guide to Intelligent Data Science Second Edition, 2020

Unrolling of a RNN over time

𝒙t

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝒚𝑡

𝒙t+1

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝒚𝑡+1

𝒙t+2

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝒚𝑡+2

𝒙t+3

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝒚𝑡+3

𝑪t−1 𝑪t 𝑪t+1 𝑪t+2 𝑪t+3

time t

13

Guide to Intelligent Data Science Second Edition, 2020

From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑ σ

∑ σ

∑ σ

∑ σ

𝒙

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐 𝑾𝒚

𝟑

∑ σ 𝑦1

𝑦2

𝒚

− A Recurrent Neural Network is a FFNN with auto and/or backward

connections

− Recurrent connections introduce the concept of time in FFNNs

14

Guide to Intelligent Data Science Second Edition, 2020

From Feed Forward to Recurrent Neural Networks

𝑥1(t)

𝑥2(t)

∑ σ

∑ σ

∑ σ

∑ σ
𝒙(𝒕)

∑ σ

∑ σ

∑ σ

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑾𝒙
𝟐 𝑾𝒚

𝟑

∑ σ 𝑦1(t)

𝒚(𝒕)

𝒚(𝒕 − 𝟏)

𝑦2(t)

𝑦1(t−1)

− A Recurrent Neural Network is a FFNN with auto and/or backward

connections

− Recurrent connections introduce the concept of time in FFNNs

15

Guide to Intelligent Data Science Second Edition, 2020

How can we represent a RNN over time?

=

− At every time t, FFNN A has two inputs:

− x(t)

− some shape of y(t-1) -> state of network A: C(t-1)

− The recurrent network can then be unrolled over time around A

16

Guide to Intelligent Data Science Second Edition, 2020

Unrolling of a RNN over time

=

The unrolled version of the original network in m intermediate steps becomes a

FFNN and can be trained with BackPropagation: Back-Propagation Through

Time (BPTT).

17

Guide to Intelligent Data Science Second Edition, 2020

Summarizing: RNNs and BPTT

− Neural network architectures with recurring connections on some units

are named Recurrent Neural Networks (RNNs).

− Adding a recurrent connection to one unit might store information about

past inputs in the evolving status of the unit.

− An easy trick to represent the recurrent network is to unroll it into m

copies of the feedforward internal block “A”, each with their set of static

weight matrix W. Each copy of “A” receives inputs X(t) and C(t-1) and

produces output y(t).

− A modified version of the Back-Propagation algorithm is used to train

RNNs: Back-Propagation Through Time (BPTT).

18

Guide to Intelligent Data Science Second Edition, 2020

Long Short Term Memory

19

Guide to Intelligent Data Science Second Edition, 2020

Simple Recurrent Unit

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

∑

𝑡𝑎
𝑛
ℎ𝒙(𝒕) 𝒉(𝒕)

The simplest possible

recurrent unit is a

single layer with an

auto-connection.

𝑪 𝒕 = 𝒉(𝒕)

20

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Guide to Intelligent Data Science Second Edition, 2020

Limitations of Layers with Simple Recurrent Units

The “memory” of simple RNNs is sometimes too limited to be useful:

− “Cars drive on the ” (road)

− “I love the beach.

My favorite sound is the crashing of the “ (cars? glass? waves?)

− Sometimes we need to go back deeper in time

21

Guide to Intelligent Data Science Second Edition, 2020

LSTM = Long Short Term Memory

Special type of unit with three gates

− Forget gate

− Input gate

− Output gate

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

22

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Guide to Intelligent Data Science Second Edition, 2020

This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate

LSTM = Long Short Term Memory

Fo
rg

et
 g

at
e

In
p

u
t

ga
te

O
u

tp
u

t
ga

te

𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

23

Guide to Intelligent Data Science Second Edition, 2020

This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate

LSTM = Forget Gate

Fo
rg

et
 g

at
e

In
p

u
t

ga
te

O
u

tp
u

t
ga

te

𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

24

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕)

𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗

25

Guide to Intelligent Data Science Second Edition, 2020

𝒇(𝒕)

𝑪(𝒕 − 𝟏)

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕) x

𝑪𝑓(𝒕)
𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗

26

Guide to Intelligent Data Science Second Edition, 2020

𝒇(𝒕)

𝑪(𝒕 − 𝟏)

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕) x

𝑪𝑓(𝒕)
𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗

27

Guide to Intelligent Data Science Second Edition, 2020

𝒇(𝒕)

𝑪(𝒕 − 𝟏)

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕)

𝝈

x

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪𝑓(𝒕)
𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗

28

Guide to Intelligent Data Science Second Edition, 2020

𝒇(𝒕)

𝑪(𝒕 − 𝟏)

LSTM: Forget Gate

− Forget Gate is trained to forget parts of the cell state.

− At time t, the forget gate decides which item of 𝑪 𝑡 − 1 to keep (and how

much of it) in 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪(𝒕 − 𝟏)

forget (0)remember (1)

𝒇(𝒕)

𝝈

x

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑪𝑓(𝒕)
𝑪𝑓(𝒕)

𝑥𝑗ℎ𝑗

𝑓𝑗

𝑓𝑗 𝑡 = 𝜎 𝑊𝑓 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑓

𝑪𝑓(𝒕) = 𝒇 𝑡 ∗ 𝑪(𝑡 − 1)

29

Guide to Intelligent Data Science Second Edition, 2020

This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate

LSTM = Input Gate

Fo
rg

et
 g

at
e

In
p

u
t

ga
te

O
u

tp
u

t
ga

te

𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

30

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Input Gate

𝒉(𝒕 − 𝟏) 𝒙(𝒕) 𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡

𝑪𝑖(𝒕)

1
Create new cell state

candidate

2
Filter cell state

candidate

𝒊(𝒕)

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

31

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Input Gate – create new state candidate

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡 𝒊(𝒕)

𝑪𝑖(𝒕)

2
Filter cell state

candidate

Notice
tanh()

32

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Input Gate – inject input

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡 𝒊(𝒕)

𝑪𝑖(𝒕)

2
Filter cell state

candidate

Notice
tanh()

Same as
for the

forget gate

33

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Input Gate – inject input

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡

ignore (0)inject (1)

𝒊(𝒕)

𝑪𝑖(𝒕)

𝑥𝑗ℎ𝑗

𝑖𝑗

34

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Input Gate

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

෩𝑪 𝑡
ignore (0)inject (1)

𝒊(𝒕)

𝑥𝑗ℎ𝑗

𝑖𝑗

𝑖𝑗 𝑡 = 𝜎 𝑊𝑖 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑖

𝑪𝑖 𝑡 = 𝒊 𝒕 ∗ ෩𝑪 𝑡

ሚ𝐶𝑗 𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝐶 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝐶

35

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Input Gate

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝑥𝑗ℎ𝑗

𝒊(𝒕) 𝑖𝑗 𝑡 = 𝜎 𝑊𝑖 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑖

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

෩𝑪 𝑡

𝑪𝑖 𝑡 = 𝒊 𝒕 ∗ ෩𝑪 𝑡

ሚ𝐶𝑗 𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝐶 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝐶

36

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Input Gate

− Input Gate is trained to inject significant parts of the current input into the

cell state.

− At time t, the input gate decides which item of 𝒙 𝑡 to inject (and how much

of it) into 𝑪 𝑡 , given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒊(𝒕) 𝑖𝑗 𝑡 = 𝜎 𝑊𝑖 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑖

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

෩𝑪 𝑡

𝑪𝑖 𝑡 = 𝒊 𝒕 ∗ ෩𝑪 𝑡

ሚ𝐶𝑗 𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝐶 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝐶

𝒕𝒂𝒏𝒉

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

37

Guide to Intelligent Data Science Second Edition, 2020

LSTM = Input Gate

Fo
rg

et
 g

at
e

In
p

u
t

ga
te

O
u

tp
u

t
ga

te

𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

𝑪 𝑡 = 𝑪𝑓 𝑡 + 𝑪𝑖 𝑡 = 𝒇 𝑡 ∗ 𝑪 𝑡 − 1 + 𝒊 𝑡 ∗ ෩𝑪 𝑡

This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate

38

Guide to Intelligent Data Science Second Edition, 2020

LSTM = Output Gate

Fo
rg

et
 g

at
e

In
p

u
t

ga
te

O
u

tp
u

t
ga

te

𝒙(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

This is an engineered type of unit with three gates:

− Forget gate

− Input gate

− Output gate

39

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Output Gate – input inject into status

− Output Gate is trained to output a reasonable result.

− At time t, output gate decides which parts of status 𝑪 𝑡 (and how much
of it) will be output, given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝑪(𝒕) 𝒉(𝒕 − 𝟏) 𝒙(𝒕)

𝒐𝒖𝒕 𝑡

𝒉(𝒕)

1
Create output

candidate from C(t)

2
Filter output candidate

𝒐(𝒕) Sigma filter

40

Guide to Intelligent Data Science Second Edition, 2020

LSTM: Input Gate – input inject into status

− Output Gate is trained to output a reasonable result.

− At time t, output gate decides which parts of status 𝑪 𝑡 (and how much
of it) will be output, given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒐𝒖𝒕 𝑡

1
Create output

candidate from C(t)

𝒐(𝒕) 𝑜𝑗 𝑡 = 𝜎 𝑊𝑜 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑜

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

𝒉 𝑡 = 𝒐 𝑡 ∗ 𝑪 𝑡

𝑪(𝒕)

41

Guide to Intelligent Data Science Second Edition, 2020

𝑪(𝒕)

LSTM: Input Gate – prepare output candidate

− Output Gate is trained to output a reasonable result.

− At time t, output gate decides which parts of status 𝑪 𝑡 (and how much
of it) will be output, given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒐𝒖𝒕 𝑡

1
Create output

candidate from C(t)

𝒐(𝒕) 𝑜𝑗 𝑡 = 𝜎 𝑊𝑜 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑜

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

𝒉 𝑡 = 𝒐 𝑡 ∗ 𝑪 𝑡tanh()
filter

42

Guide to Intelligent Data Science Second Edition, 2020

𝑪(𝒕)

LSTM: Input Gate – prepare output candidate

− Output Gate is trained to output a reasonable result.

− At time t, output gate decides which parts of status 𝑪 𝑡 (and how much
of it) will be output, given input vector 𝒙 𝑡 and previous output 𝒉 𝑡 − 1 .

𝒐𝒖𝒕 𝑡

𝒐(𝒕) 𝑜𝑗 𝑡 = 𝜎 𝑊𝑜 ∙ ℎ𝑗 𝑡 − 1 , 𝑥𝑗 𝑡 + 𝑏𝑜

𝝈

𝒉(𝒕 − 𝟏) 𝒙(𝒕)

x

𝒉 𝑡 = 𝒐 𝑡 ∗ 𝑡𝑎𝑛ℎ 𝑪(𝑡)

𝑡𝑎𝑛ℎ 𝐶(𝑡)

𝒕𝒂𝒏𝒉

43

Guide to Intelligent Data Science Second Edition, 2020

LSTM = Long Short Term Memory

Forget gate Input gate Output gateSpecial type of unit with three gates:

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

44

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Guide to Intelligent Data Science Second Edition, 2020

Different Network-Structures and Applications

Many to Many

A A A

<sos>

A

like sailing

sailing like I

I

<eos>

Language model Neural machine translation

E E E

like sailing I

D D D

Ich gehe gerne

D

segeln

Ich gehe gerne

45

Guide to Intelligent Data Science Second Edition, 2020

Different Network-Structures and Applications

A A A A

I

A

like to go sailing

English

Language classification

Text classification

One to many

A A A AA

Couple on sailing a lake

Image captioning

Many to one

46

Guide to Intelligent Data Science Second Edition, 2020

Neural Network: Code-free Example

47

Guide to Intelligent Data Science Second Edition, 2020

Neural Network: Code-free Example

48

Guide to Intelligent Data Science Second Edition, 2020

Convolutional Neural

Networks (CNNs)

49

Guide to Intelligent Data Science Second Edition, 2020

AlexNet & friends

− The big breakthrough in deep learning happened in 2012 with deep

convolutional neural networks

− Here deep learning based AlexNet network won the ImageNet challenge with an

unprecedented margin.

− The top-five error rate of AlexNet was 15 percent, while the next best competitor

ended up with 26 percent.

− This victory kicked off the surge in deep learning networks.

https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/

50

https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/

Guide to Intelligent Data Science Second Edition, 2020

Convolutional Neural Networks - CNN

− Inspired by the organization of the visual cortex in the human brain,

convolutional layers simulate the concept of a receptive field.

− Individual neurons in the convolutional layer respond only when a

specific area of the image (the visual field) is active.

− An array of such neurons covers the entire image by responding to

slightly overlapping separated areas of the input image.

Image from: Wikimedia commons –

https://commons.wikimedia.org/wiki/File:Receptive_field_sizes_along_the_ventral_cortical_stream_in_the_primate.jpg

51

https://commons.wikimedia.org/wiki/File:Receptive_field_sizes_along_the_ventral_cortical_stream_in_the_primate.jpg
https://commons.wikimedia.org/wiki/File:Receptive_field_sizes_along_the_ventral_cortical_stream_in_the_primate.jpg

Guide to Intelligent Data Science Second Edition, 2020

Numerical Representation of a Black and White Image

0 0 0 0 0

0 0 0.5 1 0

0 0.5 1 0.5 0

0 1 0.5 0 0

0 0 0 0 0

52

Guide to Intelligent Data Science Second Edition, 2020

Numerical Representation of a Color Image

0.8 0.6 … 0.6 0.9

0.1 0 0.5 1 0

⋮ 0.5 1 0.5 0

0.8 1 0.5 0 0

0.6 0 0 0 0

0.1 0.5 … 0.5 0.2

0.2 0 0.5 1 0

⋮ 0.5 1 0.5 0

0.1 1 0.5 0 0

0.2 0 0 0 0

0.1 0.1 … 0.1 0.3

0.3 0.2 … 0.1 0.1

⋮ ⋮ … ⋮ ⋮

0.8 0.7 … 0.8 0.8

0.8 0.6 … 0.6 0.9

=

53

Guide to Intelligent Data Science Second Edition, 2020

Convolutional Neural Networks

54

Guide to Intelligent Data Science Second Edition, 2020

Convolutional Neural Networks - CNN

− The idea of convolution relies on a kernel K, a mask to overlap onto a

portion P of the image pixels for the convolution operation.

− From the product of the kernel K and the pixels in portion P we get a

number, which will be the output of the first neuron in the convolutional

layer.

− Then the kernel K moves n steps on the right and goes to cover another

portion P of the image possibly slightly overlapping with the previous

one; the output for the second unit of the convolutional layer is

generated.

− And so on till the whole image has been covered by the kernel K and

convoluted into output values.

− The distance in number of pixels n between two adjacent portions P is

called stride.

55

Guide to Intelligent Data Science Second Edition, 2020

Convolutional Neurons: Example

56

Guide to Intelligent Data Science Second Edition, 2020

Convolutional Neural Networks (CNN)

− Zero padding

− Artificially increases the input at the

boundary

− Helps with preserving the spatial

resolution and alignment

− Stride

− The jump the kernel makes when

moving over the input

− Reduces the spatial resolution

Image from: https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-

eli5-way-3bd2b1164a53

57

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Guide to Intelligent Data Science Second Edition, 2020

Pooling Layers

− Usually a number of convolutional layers are used.

− Each layer provides one further step in the process of extracting high-

level features from the input image (colors, edges, entities, …).

− Pooling layers are often used to reduce the spatial resolution in between

convolutional layers to

− Increase the receptive field of the following layers

− Reduce computational complexity

− Two types of Pooling

− Max Pooling returns the maximum value from the portion of the image covered by the

Kernel.

− Average Pooling returns the average of all values from the portion of the image

covered by the Kernel.

58

Guide to Intelligent Data Science Second Edition, 2020

Example Pooling

59

Guide to Intelligent Data Science Second Edition, 2020

Classification Layers

− After the sequence of convolutional + pooling layers, a classic feedforward

multilayer Perceptron network is applied to carry out the classification process.

− Successful examples of CNNs for image recognition : LeNet, AlexNet, VGGNet,

GoogLeNet, ResNet, ZFNet.

60

Guide to Intelligent Data Science Second Edition, 2020

CNN: Transfer Learning

− Training such networks is a long and complex process, requiring very
powerful machines.

− Instead of retraining a new network completely from scratch, we could
recycle existing networks, already built and trained by others on similar
data.

− This technique is called Transfer Learning.

− In Transfer Learning a model developed for a task is reused as the starting
point for another model on a second task.

− On top of a previously trained network we add one or more neural layers

− We freeze all or some of the previously trained layers

− And we retrain only the remaining part of the whole network on our new task

61

Guide to Intelligent Data Science Second Edition, 2020

Building CNNs with KNIME

train for epochs
w ith Adam

 N T images

 rite to f ile

Node

Node

train for epochs
w ith Adam

 N T images

 rite to f ile

Node

Node

62

Guide to Intelligent Data Science Second Edition, 2020

Generative-Adversarial

Networks (GANs)

63

Guide to Intelligent Data Science Second Edition, 2020

GANs

− So far: RNNs and CNNs

− Recurrent Neural Networks (RNNs) and Convolutional Neural Networks

(CNNs) represent probably the biggest contribution of deep learning to

the field of neural networks.

− However, deep learning is responsible for other innovations, such as for

example Generative Adversarial Networks (GANs).

64

Guide to Intelligent Data Science Second Edition, 2020

Can You Tell Real from Fake?

Source: https://thispersondoesnotexist.com

65

Guide to Intelligent Data Science Second Edition, 2020

GAN: Generator

− GANs include two neural networks competing with each other: the

generator and the discriminator.

− A generator G is a transformation that transforms the input noise z into

a tensor – usually an image – x (x=G(z)). The generated image x is then

fed into the discriminator network D.

− The discriminator network D compares the real images in the training

set and the image generated by the generator network and produces an

output D(x), which is the probability that image x is real.

66

Guide to Intelligent Data Science Second Edition, 2020

GAN: Training

− Both generator and discriminator are trained using the backpropagation

and gradient descent.

− Both networks are trained in alternating steps, competing with each

other to improve themselves.

− The objective of the generator is to fool the discriminator i.e. 𝐷 𝐺 𝑧 = 1

− The objective of the discriminator is to output 𝐷 𝐺 𝑧 = 0 and 𝐷 𝑥𝑟𝑒𝑎𝑙 = 1

− The GAN model eventually converges and produces images that look

real.

− Given a training set, this technique learns to generate new data under

the same statistics as the training set.

67

Guide to Intelligent Data Science Second Edition, 2020

GAN: Architecture

Discriminator
𝐷 𝑥; 𝜃𝑑

Generator

𝐺 𝑧; 𝜃𝑔
𝑧 ~𝑝𝑧

෤𝑥 ~𝑝𝑔

𝑥 ~𝑝𝑑𝑎𝑡𝑎
dataset ෤𝑥 𝑖𝑠 𝑟𝑒𝑎𝑙?

𝑠 ෤𝑥
Score

function

68

Guide to Intelligent Data Science Second Edition, 2020

GANs

− For example, a GAN trained on photographs can generate new photographs that

look at least superficially authentic to human observers, having many realistic

characteristics.

− GANs have been successfully applied to image tensors to create anime, human

figures, and even van Gogh-like masterpieces.

Image from: Pankaj Kishore, Towards data Science

https://towardsdatascience.com/art-of-generative-adversarial-networks-gan-62e96a21bc35

69

https://towardsdatascience.com/art-of-generative-adversarial-networks-gan-62e96a21bc35

Guide to Intelligent Data Science Second Edition, 2020

Summary

− Recurrent Neural Networks (RNNs)

− Long Short Term Memories (LSTMs)

− Convolutional Neural Networks (CNNs)

− Generative Adversarial Networks (GANs)

70

Guide to Intelligent Data Science Second Edition, 2020

Practical Examples with

KNIME Analytics Platform

71

Guide to Intelligent Data Science Second Edition, 2020

RNN Workflow: Text Generation

72

Guide to Intelligent Data Science Second Edition, 2020

CNN Workflow: Image Classification using MNIST

Extensions required:

− KNIME Image Processing

− KNIME Image Processing –

Deep Learning Extension

73

Guide to Intelligent Data Science Second Edition, 2020

Installing Extensions

− Install extension by going to File -> Install KNIME Extension

or via Drag & Drop from the KNIME Community Hub

74

Guide to Intelligent Data Science Second Edition, 2020

Thank you

75

	Slide 1: Deep Learning
	Slide 2: Summary of this lesson
	Slide 3: Content of this lesson
	Slide 4: Datasets
	Slide 5: Deep Learning
	Slide 6: Recurrent Neural Networks (RNNs)
	Slide 7: What are Recurrent Neural Networks?
	Slide 8: Why do we need RNNs for Sequential Data?
	Slide 9: Why do we need RNNs for Sequential Data?
	Slide 10: From Feed Forward to Recurrent Neural Networks
	Slide 11: From Feed Forward to Recurrent Neural Networks
	Slide 12: From Feed Forward to Recurrent Neural Networks
	Slide 13: Unrolling of a RNN over time
	Slide 14: From Feed Forward to Recurrent Neural Networks
	Slide 15: From Feed Forward to Recurrent Neural Networks
	Slide 16: How can we represent a RNN over time?
	Slide 17: Unrolling of a RNN over time
	Slide 18: Summarizing: RNNs and BPTT
	Slide 19: Long Short Term Memory
	Slide 20: Simple Recurrent Unit
	Slide 21: Limitations of Layers with Simple Recurrent Units
	Slide 22: LSTM = Long Short Term Memory
	Slide 23: LSTM = Long Short Term Memory
	Slide 24: LSTM = Forget Gate
	Slide 25: LSTM: Forget Gate
	Slide 26: LSTM: Forget Gate
	Slide 27: LSTM: Forget Gate
	Slide 28: LSTM: Forget Gate
	Slide 29: LSTM: Forget Gate
	Slide 30: LSTM = Input Gate
	Slide 31: LSTM: Input Gate
	Slide 32: LSTM: Input Gate – create new state candidate
	Slide 33: LSTM: Input Gate – inject input
	Slide 34: LSTM: Input Gate – inject input
	Slide 35: LSTM: Input Gate
	Slide 36: LSTM: Input Gate
	Slide 37: LSTM: Input Gate
	Slide 38: LSTM = Input Gate
	Slide 39: LSTM = Output Gate
	Slide 40: LSTM: Output Gate – input inject into status
	Slide 41: LSTM: Input Gate – input inject into status
	Slide 42: LSTM: Input Gate – prepare output candidate
	Slide 43: LSTM: Input Gate – prepare output candidate
	Slide 44: LSTM = Long Short Term Memory
	Slide 45: Different Network-Structures and Applications
	Slide 46: Different Network-Structures and Applications
	Slide 47: Neural Network: Code-free Example
	Slide 48: Neural Network: Code-free Example
	Slide 49: Convolutional Neural Networks (CNNs)
	Slide 50: AlexNet & friends
	Slide 51: Convolutional Neural Networks - CNN
	Slide 52: Numerical Representation of a Black and White Image
	Slide 53: Numerical Representation of a Color Image
	Slide 54: Convolutional Neural Networks
	Slide 55: Convolutional Neural Networks - CNN
	Slide 56: Convolutional Neurons: Example
	Slide 57: Convolutional Neural Networks (CNN)
	Slide 58: Pooling Layers
	Slide 59: Example Pooling
	Slide 60: Classification Layers
	Slide 61: CNN: Transfer Learning
	Slide 62: Building CNNs with KNIME
	Slide 63: Generative-Adversarial Networks (GANs)
	Slide 64: GANs
	Slide 65: Can You Tell Real from Fake?
	Slide 66: GAN: Generator
	Slide 67: GAN: Training
	Slide 68: GAN: Architecture
	Slide 69: GANs
	Slide 70: Summary
	Slide 71: Practical Examples with KNIME Analytics Platform
	Slide 72: RNN Workflow: Text Generation
	Slide 73: CNN Workflow: Image Classification using MNIST
	Slide 74: Installing Extensions
	Slide 75: Thank you

