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Summary of this lesson
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ñIf I do not believe the news in todays paper, I buy 100 copies of the paper. 

Then I believe.ò

-Ludwig Wittgenstein

How can we learn from multiple models together?

Guide to Intelligent Data Science Second Edition, 2020

*This lesson refers to chapter 9 of the GIDS book
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Content of this lesson

-Wisdom of the Crowd

-Bagging & Boosting

-Stacking and Cascade 

Generalization

-Cascading and Delegating

-Tree Ensembles and Random 

Forest

-AdaBoost

-Gradient Boosted Trees

-Practical Examples

Guide to Intelligent Data Science Second Edition, 2020



Datasets
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-Datasets used : adult dataset

-ĂRandom Forest, Gradient Boosted Trees, and Tree Ensembleñ https://kni.me/w/Ueq3QR9hty8Osh2E

- Random forest

- Gradient boosting

- Tree ensemble

Guide to Intelligent Data Science Second Edition, 2020

https://kni.me/w/Ueq3QR9hty8Osh2E


Ensemble Models
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-General idea: take advantage of the ñwisdom of the crowdò

-Training of many weak classifiers (or regression models)

-Combining them to construct a classifier (regression model) more 

accurate than any of the individual ones

-Leads to a more accurate and robust model

-Interpretation of an ensemble learning model is difficult
- Since it consists of many models!
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Wisdom of the Crowd
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Wisdom of the Crowd
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-The collective knowledge of a diverse and independent body of people 

typically exceeds the knowledge of any single individual and can be 

harnessed by voting.

- http://www.csc.kth.se/utbildning/kth/kurser/DD2431/ml11/schedule/07-ensamble.pdf

Guide to Intelligent Data Science Second Edition, 2020

Crowd wiser than any 

individual

Å When?

Å For which questions?

http://www.csc.kth.se/utbildning/kth/kurser/DD2431/ml11/schedule/07-ensamble.pdf


Wisdom of the Crowd: Scenario
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-Ask each person in the crowd:

-Will Mr. X win the general election in country Y?

-The Crowdôs prediction:

-MAJORITY answer.

-This crowd predicts No. (Mr. X will not win the 

election.)
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Wisdom of the Crowd: Scenario
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-Has the crowd made a good prediction?

-Composition of crowd:

-30% EXPERTS.

-70% NON-EXPERTS.

-and their level of expertise:

-P(correct predict|expert) = ὴ

-P(correct predict|non-expert) = ὴ
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Wisdom of the Crowd: Scenario

10

-Let ὴ πȢψand ὴ πȢυ

-For a random person from the crowd

-P(correct predict|individual) = πȢσὴ πȢχὴ πȢυω
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Wisdom of the Crowd: Scenario
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-Let ὴ πȢψand ὴ πȢυ

-For a random person from the crowd

-P(correct predict|individual) = ὴ πȢυω

- If crowd contains 50 independent people:

-P(correct predict|crowd)  

υπ
Ὧ
ὴ ɇρ ὴ πȢψχτυ

-This crowd has made a prediction with probability .875 of 

being correct which is ὴ.

- It is wiser than each of the experts!
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Wisdom of the Crowd
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-Ensemble of predictors often outperform individual predictors

-Consider a majority voting of 5 independent classifiers in a binary 

classification problem. 

-Each predictor, the error probability is 0.3

-Probability of three or more predictors yielding a wrong result (i.e., the 

majority misclassifies) is very low:

υ
Ὥ
πȢσɇπȢχ πȢπψχτψ

-Substantial reduction in error rate!

-In reality, classifiers are rarely independent of each other
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But ...
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-Why didnôt I just asked a bunch of experts??

-Large enough crowd 

-Č high probability that a sufficient number of experts will be in crowd (for any 

question).

-Random selection 

-Č donôt make a biased choice in experts.

-For some questions it may be hard to identify a diverse set of experts
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For a random crowd
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-Given a random question expect each person to have a different 

level of expertise.

-Will it rain tomorrow?

-redness proportional to expertise

Guide to Intelligent Data Science Second Edition, 2020



For a random crowd
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-Given a random question expect each person to have a different 

level of expertise.

-Will the world go down in December?

-redness proportional to expertise
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What makes a crowd wise?
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According to James Surowiecki there are four elements required to form a 

wise crowd:

-Diversity of opinion. People in crowd should have a range of 

experiences, education and opinions. (Encourages independent 

predictions)

-Independence. Prediction by person in crowd is not influenced by other 

people in the crowd.

-Decentralization. People have specializations and local knowledge.

-Aggregation. There is a mechanism for aggregating all predictions into 

one single prediction.
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The crowd must be careful
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In the analysis of the crowd it is implicitly assumed:

-each person is not concerned with the opinions of others, no-one is 

copying anyone else in the crowd.

In the analysis of the crowd we implicitly assumed:

-The non-experts will predict a completely random wrong answer -

these will cancel each other out (to some degree).

However, there may be a systematic and consistent bias in the non-

expertsô predictions.
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... Back to Ensemble Models
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Back to Machine Learning
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We will exploit Wisdom of crowd ideas for specific tasks by:

-combining (classifier) predictions 

-aim to combine independent and diverse predictors (classifiers).

We can also use labeled training data

- to identify the expert classifiers in the pool;

- to identify complementary classifiers;

- to indicate how to best combine them.

Guide to Intelligent Data Science Second Edition, 2020
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Why Do Ensemble Methods Work?
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Statistical reason: 

-Able to average many good models

-Reduces the influence of bad models

Computational reason:

-Able to explore the model space efficiently

Representational reason:

-Reduce the bias of a learning algorithm by extending its model space
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Basic Terms
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Remember?

-Bias = model error + algorithmic error

-Model error: the error we get by selecting a model

-Algorithmic error: by selecting the algorithm itself and the parameters of the algorithm

-Base-Learning: Fixed Bias / User parameterized

-Meta-Learning: Dynamic bias selection using meta-knowledge

-Meta-Knowledge: Knowledge achieved during the learning process
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Ensemble Learning for Algorithm Recommendation
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Combining base-learners: Categories
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Philosophy Technique

Bagging, Boosting Variation in data

Stacking Variation among learners (multi-expert)

Cascading, Delegating Variation among learners (multi-stage)

Arbitrating Variation among learners (refereed)

Meta decision trees Variation in data and among learners



Bagging and Boosting
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Bagging and Boosting
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-Best-known techniques

-Based on selection of multiple data sub sets

-Meta model is created by combining the base models

-Advantages:

-Reduces overfitting

-Most effective when the base learner is highly sensitive to data

-Typically increases accuracy

-Disadvantages:

- Interpretability of interpretable base learners is lost

Guide to Intelligent Data Science Second Edition, 2020



Bagging
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Bagging :

-Select ὔindependent samples of the Training Data

-Learn one model on each of the samples Č ὬȟȣȟὬ

-Classification: Use the class most predicted by all classifiers

-Regression: Use the mean of all predictions

Guide to Intelligent Data Science Second Edition, 2020



Boosting
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Boosting:

-Tries to learn a weighting for the models

-Later base learners focus more on the examples that previous base 

learners misclassified

-There is no single ñbestò boosting method
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Boosting
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One boosting method after Schapire

Training :

-Create c1: base learner on a sample t1 of the data

-Create t2: sample which is 50% misclassified by c1

-Create c2: base learner on the sample t2

-Create t3: subset of the data where c1 predicts differently than c2

-Create c3: base learner on the sample t3

Classification :

-Classify with c1 and c2

-If unequal, use c3 as final classification

Guide to Intelligent Data Science Second Edition, 2020



Stacking and Cascade 

Generalization
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Stacking
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Stacking

- In Bagging and Boosting: we used always the same base learner

- Stacking exploits differences among base learners

- Two levels of learning

1. Base learners are trained, each on the whole data set

2. Meta learners are created on meta data (e.g. predicted class) obtained in level 1

- Two levels of classifying

1. Base learner are used on data point

2. Meta learners are applied on base learner predictions
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Cascade Generalization
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Stacking: Base learners are used in parallel

Cascade Generalization

-Base learners are used in a sequence with òpartialò meta-

learners

- Knowledge from previous classifiers can be used in later ones

- After each base learner has been trained, the data set is 

adjusted using the new information

For classification :

- Only the last model is used, which incorporates the 

knowledge from previous models (all base methods are used)
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Cascading and 

Delegating
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Cascading and Delegating
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-Until now: all base classifiers are used for classification

-Here: Multistage classifiers, not all are required for classification

-Main advantage: faster classification
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Cascading
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Cascading

-Multilearner version of boosting

-Uses learned confidence of previous 

models

-Train base learner Ὤusing knowledge from 

previous base learner...

-...on data, which was most probably 

misclassified by previous learners

-Classification: go through all base 

models, stop and use as classification if the 

model has confidence greater than epsilon
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Delegating
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-Cascading: all instances are used in each step

-Delegating: only instances below confidence threshold are processed 

in the next step

-Idea:

-Use everything and test for which data points you are good enough

-Pass the remaining work to someone else.

- If there is no someone else, ... guess

-Advantages:

-Still understandable (no model combination)

- Improved efficiency, due to the decreasing number of examples.
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Tree Ensembles and 

Random Forest
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Bagging - Idea
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-Bagging ſ Bootstrap AGGregatING

-For each tree / model a training set is generated by sampling uniformly 

with replacement from the standard training set

Guide to Intelligent Data Science Second Edition, 2020
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Example for Bagging
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RowID ● ● ◐

Row_1 2 6 Class 1

Row_2 4 1 Class 2

Row_3 9 3 Class 2

Row_4 2 7 Class 1

Row_5 8 1 Class 2

Row_6 2 6 Class 1

Row_7 5 2 Class 2

Full training set 

Sampled datasetRowID ● ● ◐

Row_3 9 3 Class 2

RowID ● ● ◐

Row_3 9 3 Class 2

Row_6 2 6 Class 1

RowID ● ● ◐

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

RowID ● ● ◐

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Row_3 9 3 Class 2

RowID ● ● ◐

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Row_3 9 3 Class 2

Row_5 8 1 Class 2

RowID ● ● ◐

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Row_3 9 3 Class 2

Row_5 8 1 Class 2

Row_6 2 6 Class 1

RowID ● ● ◐

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Row_3 9 3 Class 2

Row_5 8 1 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Sampled training set 
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Bagging - Idea
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Why sampling with replacement?

Č So that a sample approximates the distribution of the population

-Frequent values are represented more

-Less frequent values are represented less

Ultimately leads to the model with smaller variance and smaller bias
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An Extra Benefit of Bagging: Out of Bag Estimation
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-Able to evaluate the model using the training data

-Apply trees to samples that havenôt been used for training
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Random Forest
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-Bag of decision trees, with an extra 

element of randomization 

-Each node in the decision tree only 

ñseesò a subset of the input features

Č Random Subspace Selection

-typically ὲto pick from

-Random forests tend to be very robust 

w.r.t. overfitting
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AdaBoost
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AdaBoost
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-Freund & Schapire (1995)

-AB is a linear classification algorithm

-AB has good generalization properties

Č(Avoids overfitting as long as the training data is not too noisy)

-AB is a feature selector
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AdaBoost
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-AdaBoost classifier: В Ὤ ●

-Where a weak classifier Ὤ ● is weighted by  for steps up to Ὕ

-Misclassified data points are weighted more in subsequent steps

-Classification result: Ὄ● ίὭὫὲВ Ὤ ●
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AdaBoost: Terminology
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-Strong Classifier: В Ὤ ●

-Where Ὤ ● is a base classifier weighted by 

-Classification result: 

(● ίὫὲ Ὤ ●
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AdaBoost
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-Initially, all data points are given the same weight ύȟ ρȾὲ.

-At step ὸ, the classifier weight  is calculated as

-Where Ὡ is given by

-Weights ύôs are updated as
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Adaboost pseudo-code Overview
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