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Summary of this lesson
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“Good fences make good neighbors”

-Robert Frost

Can we learn from surrounding elements? 
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*This lesson refers to chapter 9 of the GIDS book
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Content of this lesson

− Lazy learners vs eager learners

− k-nearest neighbor (kNN) predictors

− Weighting & prediction functions

− Choosing parameter k
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Datasets

4

− Datasets used : iris dataset

− Example Workflow: 
− „Classification of the iris data using kNN“ https://kni.me/w/ZVkD_W8LnSh_t9Na

− normalization 

− kNN with k=1
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Lazy and Eager 

Learners
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Nearest-Neighbor Predictors
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− One of the simplest learning methods

− Predict class labels or target values from nearest neighbors

− Majority voting – classification

− Averaging – numeric prediction

An example of lazy learners, in contrast to eager learners

− Lazy learners: Save all data from training, use it for classifying

(The learner was lazy, classifier had to do the work)

− Eager learners: Build a (compact) model/structure during training, use 

the model for classification.

(The learner was eager/worked harder, classifier had simple life)
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Motivation
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− How to classify a new observation (red X)? Blue or red?

− Solution: the majority vote of its neighbors, 
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Motivation
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Examining k-nearest neighbors, decided based on the majority vote

− k=3: 3 blues ➔ classified as blue

− k=5: 3 blues, 2 reds ➔ classified as blue

− k=10: 6 blues, 4 reds ➔ classified as blue
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Nearest-Neighbor Predictors
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An example of lazy learners, in contrast to eager learners

− Lazy learners: Save all data from training, use it for classifying

(The learner was lazy, classifier had to do the work)

− Eager learners: Build a (compact) model/structure during training, use 

the model for classification.

(The learner was eager/worked harder, classifier had simple life)
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k-Nearest Neighbor 

Predictors
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Nearest-Neighbor Predictors

11

− Nearest neighbor predictors are special case of instance-based 

learning

− Instead of constructing a model that generalizes beyond the training 

data, the training examples are merely stored.

− Predictions for new cases are derived directly from these stored 

examples and their (known) classes or target values.
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Simple Nearest Neighbor Predictors
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− For a new instance, use the target value of the closest neighbor in the 

training set
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Nearest Neighbor Predictor: Issues
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− Nearest neighbor predictors are sensitive to noises

➔ How can we overcome this?
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k-Nearest Neighbor Predictor
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Prediction with 𝑘 neighbors (𝑘 > 1) taken into account 

➔ k-nearest neighbor predictor

− Classification: Choose the majority class among the 𝑘 nearest 

neighbors for prediction

− Regression: Take the mean value of the 𝑘 nearest neighbors for 

prediction

Problem:

− All 𝑘 nearest neighbors have the same influence on the prediction.

➔ Closer nearest neighbors should have higher influence
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Ingredients of kNN
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Ingredients for k-Nearest Neighbor Predictor
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Distance Metric:

− Determines which of the training examples are nearest to a query data 

point

− Possible scaling or weighting of some attributes

Number of Neighbors (𝑘):

− The number of neighbors to be considered

− In theory it can range from 1 to all data points
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Ingredients for k-Nearest Neighbor Predictor
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Weighting function:

− Weighting function defined from the query point

− Higher (lower) values for smaller (larger) distances

Prediction function:

− A way to compute the prediction from the neighbors

− Neighbors may differ from each other ➔ may not produce a unique 

prediction
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Ingredients for k-Nearest Neighbor Predictor
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Average (3 nearest neighbors)

Distance weighted 

(2 nearest neighbors)



Choosing the Right Ingredients
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Distance metric

− Problem dependent – often Euclidean

Number of Neighbors (𝑘)

− Often chosen by cross-validation

− Should use an odd number to avoid possible ties in classification
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Choosing the Right Ingredients
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Weighting function

− Example: tri-cubic weighting function

− 𝑞: Query point

− 𝑠𝑖: Input vector of the 𝑖-th nearest neighbor

− 𝑘: Number of neighbors to be considered

− 𝑑: Distance function

− 𝑑𝑚𝑎𝑥(𝑞, 𝑘): Maximum distance between any two nearest neighbors and 

the distances of the nearest neighbours to the query point
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𝑤 𝑠𝑖 , 𝑞, 𝑘 = 1 −
𝑑 𝑠𝑖 , 𝑞

𝑑𝑚𝑎𝑥 𝑞, 𝑘

3 3



Choosing the Right Ingredients
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Prediction function

Regression

− Weighted average of the target of the nearest neighbors

Classification

− Sum up the weights for each class among the nearest neighbors.

− Choose the class with the highest weighted sum
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Kernel Functions
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A k-nearest neighbor predictor with a weighting function

− Interpreted as an n-nearest neighbor predictor with a modified weighting 

function

− The modified weighting function simply assigns 0 to all instances not 

belonging to the k nearest neighbors.

More general approach

− Use a kernel function assigning distance-dependent weights to all 

instances in the training data set.
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Kernel Functions
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A kernel function 𝐾(∙):

− 𝐾(𝑑) a function of distance 𝑑 (originating from a query point)

− 𝐾 𝑑 ≥ 0

− 𝐾 0 = 1 (or it peaks at 0)

− 𝐾(𝑑) decreases monotonically as 𝑑 incerases
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Kernel Function Examples
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Typical examples for kernel functions

Where 𝜎 > 0 is a predefined constant
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𝐾𝑟𝑒𝑐𝑡 𝑑 = ቊ
1
0

if 𝑑 ≤ 𝜎
otherwise

𝐾𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑑 = 𝐾𝑟𝑒𝑐𝑡 𝑑 ∙ 1 −
𝑑

𝜎

𝐾𝑡𝑟𝑖𝑐𝑢𝑏𝑖𝑐 𝑑 = 𝐾𝑟𝑒𝑐𝑡 𝑑 ∙ 1 −
𝑑3

𝜎3

3

𝐾𝐺𝑎𝑢𝑠𝑠 𝑑 = 𝑒𝑥𝑝 −
𝑑2

2𝜎2



Locally Weighted (Polynomial) Regression
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− For regression, we can use weighted averaging of the target

− Alternatively, we can also compute a local weighed-regression function 

at the query point
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Kernel weighted regression

Distance-weighted local 

regression (k=4, tricubic)



Adjusting the Distance Function
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− Choice of a distance function ➔ crucial in nearest neighbor methods

− Weighted features in a distance function ➔ more emphasis on 

important features

− Feature weights can be found based on heuristic strategies

− Hill climbing, simulated annealing, evolutionary algorithms, etc.

− Can be evaluated via cross-validation
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Data Reduction – Prototype Building
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Nearest neighbor methods

− Pro: no training is needed

− Con: prediction on a large data set is computationally demanding

Solutions:

− Smaller subset of the training data for the nearest neighbor predictor

− Prototypes by merging close instances, e.g., by averaging

➔ Can be carried out based on cross-validation and using heuristic

optimization strategies

Guide to Intelligent Data Science Second Edition, 2020



Choice of Parameter k
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Choice of Parameter k
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− Linear classification problem (with some noise)
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Choice of Parameter k
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− Decision boundaries with different k
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Truth

k=1 k=2 k=5

k=50 k=470 k=500



Choice of Parameter k
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− k=1: y=piecewise constant labeling

− k too small: very sensitive to outliers

− k too large: many objects from other classes in the decision set

− k = N: y=globally constant (majority) label

➔ k can be determined manually, or heuristically (such as cross-

validation)
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Special Case, k=1
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− Simple classifier, k=1. Voronoi tessellation of input space
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Special Case, k=1
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Highly localized classifier, perfectly fits separable training data

Bias of the Learning Algorithm?

− No variations in search: simple store all examples

Model Bias?

− Classification via Nearest Neighbor

Hypothesis Space?

− One hypothesis only: Voronoi partitioning of space

Guide to Intelligent Data Science Second Edition, 2020



Summary

34

Nearest neighbor classifiers are:

− Instance-based classifiers ➔ remember all training cases

− Sensitive to neighborhood – things to consider:

− Number of neighbors k

− Distance function

− Weighting function

− Prediction function
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Practical Examples with 

KNIME Analytics Platform
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KNIME Workflow
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− Classification of the iris data using kNN

Guide to Intelligent Data Science Second Edition, 2020
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Thank you
For any questions please contact: education@knime.com
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