
Neural

Networks

Summary of this lesson

2

“Tell me and I forget. Teach me and I remember. Involve me and I learn.”

-Benjamin Franklin

How do machines learn?

Guide to Intelligent Data Science Second Edition, 2020

*This lesson refers to chapter 9 of the GIDS book

3

Content of this lesson

− Multilayer Perceptrons
− The Perceptron

− Why the Perceptron is not enough

− The MLP

− The Back Propagation algorithm
− The delta rule to train the output neurons

− Recursivity to train the hidden neurons

− Learning rate and local minima

− MLP and BackPropagation
− Pro‘s and Con‘s

− Black-box tools

− Overfitting

− Techniques to avoid overfitting

− Special architectures

Guide to Intelligent Data Science Second Edition, 2020

Datasets

4

− Datasets used : iris dataset

− Example Workflows:
− „Classifying the iris data set with ANN“ https://kni.me/w/ei3eX9Sj5-RFEUat

− Keras layers

− Multi-layer perceptrion

− Back propagation

Guide to Intelligent Data Science Second Edition, 2020

https://kni.me/w/ei3eX9Sj5-RFEUat

5

Classification vs. Regression

Transparent

− The decision process maps the

application domain

− How did we come to this final

medical diagnosis?

Black-box

− Abstract mathematical

procedures not meaningful for

the application domain

− Recover most similar face in a

million. How and why is not

important.

Guide to Intelligent Data Science Second Edition, 2020

Supervised Learning

− A target attribute is predicted based on other attributes

− Assumption: in addition to the object description x, we have also

the value for the target attribute y

Biological Neuron

6Guide to Intelligent Data Science Second Edition, 2020

Artificial Neural Networks

7

− Artificial Neural Networks (ANN) are among the oldest and most

intensely studied Machine Learning approaches

− They took their inspiration from biological neural networks and tried to

mimic the learning process of animals and humans

− However, the model of biological processes ended up to be very coarse,

and several improvements to the basic approach have even abandoned

the biological analogy

Guide to Intelligent Data Science Second Edition, 2020

Advantage

Highly flexible ➔ good performance

Disadvantage

Black-box models not easy to interpret

Biological Neural Networks

8

− Human brain: ca. 1011 neurons.

− Each neuron connected to 104 other neurons on average.

− Switching time of a neuron 10−3 sec (computer: 10−10 sec ...)

− Neurons compute very basic functions

− Neuron assembly performs complex recognition tasks (faces!) in 10−1

sec!

− The human brain: gigantic assembly of highly connected simple

processing units...

Guide to Intelligent Data Science Second Edition, 2020

Biological Neuron

Biological Neuron Biological Neural Networks

Guide to Intelligent Data Science Second Edition, 2020 9

Perceptron

10Guide to Intelligent Data Science Second Edition, 2020

McCulloch-Pitts Model of a neuron (1943)

11

− Aim: neurobiological modelling and simulation to understand very elementary

functions of neurons and brain.

− A neuron is a binary switch, being either active or inactive.

− Each neuron has a fixed threshold value.

− A neuron receives input signals from excitatory (positive) synapses

(connections to other neuron).

− A neuron receives input signals from inhibitory (negative) synapses

(connections to other neuron).

− Inputs to a neuron are accumulated (integrated) for a certain time. When the

threshold value of the neuron is exceeded, the neuron becomes active and

sends signals to its neighbouring neurons via its synapses.

Guide to Intelligent Data Science Second Edition, 2020

The Perceptron (Rosenblatt, 1958)

12

− The perceptron was introduced by Frank Rosenblatt for modelling

pattern recognition abilities in 1958.

− Aim: Automatic learning of weights and threshold of a model of a retina

to correctly classify objects.

− A simplified retina is equipped with receptors (input neurons) that are

activated by an optical stimulus.

− The stimulus is passed on to an output neuron via a weighted

connection (synapse).

− When the threshold of the output neuron is exceeded, the output is 1,

otherwise 0.

Guide to Intelligent Data Science Second Edition, 2020

Identifying the letter F

13

− 2 positive and 1 negative example

Guide to Intelligent Data Science Second Edition, 2020

Biological Neuron vs. Perceptron

Biological Neuron Biological Neural Networks

∑ σf()

𝑤𝑛

𝑤1

𝑏

Artificial Neuron (Perceptron)

𝑎(𝒙) =

𝑖=1

𝑛

𝑥𝑖𝑤𝑖
𝑥1

𝑥𝑛

y
• Numerical input attributes 𝑥𝑖
• Binary output class (0 or 1).

• Classifier for two-class problem

• For multiclass problems use one

perceptron per class𝑦 = 𝑓 𝒙 = ቊ
1 𝑖𝑓 𝑎 𝒙 > 𝑏

0 𝑖𝑓 𝑎 𝒙 ≤ 𝑏

𝑤𝑖
𝑥𝑖

Guide to Intelligent Data Science Second Edition, 2020 14

Perceptron Learning Algorithm

15

− Initialise the weight and the threshold values randomly.

− For each data object in the training data set, check whether the

perceptron predicts the correct class.

− If the perceptron predicts the wrong class, adjust the weights and

threshold value to improve the prediction.

− Repeat this until no changes occur

Guide to Intelligent Data Science Second Edition, 2020

The delta rule

16

− Whenever the perceptron makes a wrong classification

➔ change weights and threshold in ”appropriate direction”.

− If the desired output is 1 and the perceptron’s output is 0, the threshold

is not exceeded, although it should be. Therefore, lower the threshold

and adjust the weights depending on the sign and magnitude of the

inputs.

− If the desired output is 0 and the perceptron’s output is 1, the threshold

is exceeded, although it should not be. Therefore, increase the

threshold and adjust the weights depending on the sign and magnitude

of the inputs.

Guide to Intelligent Data Science Second Edition, 2020

The delta rule

17

− The delta rule recommends to adjust the weight and the threshold

values as:

𝑤𝑖
𝑛𝑒𝑤 = 𝑤𝑖

𝑜𝑙𝑑 + ∆𝑤𝑖

𝑏𝑛𝑒𝑤 = 𝑏𝑜𝑙𝑑 + ∆𝑏

− 𝑤𝑖: A weight of the perceptron

− 𝑏 : The threshold value of the perceptron

− 𝑥1, 𝑥2, … , 𝑥𝑛 : An input vector

− 𝑡: the desired output for input vector 𝑥1, 𝑥2, … , 𝑥𝑛

− 𝑦: the real output of the Perceptron for input vector 𝑥1, 𝑥2, … , 𝑥𝑛

− 𝜂 > 0: the Learning rate

Guide to Intelligent Data Science Second Edition, 2020

The delta rule

18

− The delta rule recommends to adjust the weight and the threshold

values as:

∆𝑤𝑖= ቐ

0 𝑖𝑓 𝑦 = 𝑡
+𝜂𝑥𝑖 𝑖𝑓 𝑦 = 0 𝑎𝑛𝑑 𝑡 = 1
−𝜂𝑥𝑖 𝑖𝑓 𝑦 = 1 𝑎𝑛𝑑 𝑡 = 0

∆𝑏 = ቐ

0 𝑖𝑓 𝑦 = 𝑡
−𝜂 𝑖𝑓 𝑦 = 0 𝑎𝑛𝑑 𝑡 = 1
+𝜂 𝑖𝑓 𝑦 = 1 𝑎𝑛𝑑 𝑡 = 0

Guide to Intelligent Data Science Second Edition, 2020

Example: Learning the logical operator AND

19

− Training Data:
{((0,0),0), ((0,1),0), ((1,0),0), ((1,1), 1)}

− Learning rate 𝜂 = 1

− Initialization: 𝑤1 = 𝑤2 = 𝑏 = 0

Guide to Intelligent Data Science Second Edition, 2020

∑ σf()

𝑤2

𝑤1
𝑏𝑥1

𝑥2

y

Inputs

target
0

00

1

𝒙 t y ∆𝑤1 ∆𝑤2 ∆b 𝑤1
𝑛𝑒𝑤 𝑤2

𝑛𝑒𝑤 𝑏𝑛𝑒𝑤

0 0 0

Epoch 1

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 1 1 0 1 1 -1 1 1 -1

𝑥1

𝑥2

Example: Learning the logical operator AND

20Guide to Intelligent Data Science Second Edition, 2020

𝒙 t y ∆𝑤1 ∆𝑤2 ∆b 𝑤1
𝑛𝑒𝑤 𝑤2

𝑛𝑒𝑤 𝑏𝑛𝑒𝑤

1 1 -1

Epoch 2

0 0 0 1 0 0 1 1 1 0

0 1 0 1 0 -1 1 1 0 1

1 0 0 0 0 0 0 1 0 1

1 1 1 0 1 1 -1 2 1 0

𝒙 t y ∆𝑤1 ∆𝑤2 ∆b 𝑤1
𝑛𝑒𝑤 𝑤2

𝑛𝑒𝑤 𝑏𝑛𝑒𝑤

2 1 0

Epoch 3

0 0 0 0 0 0 0 2 1 0

0 1 0 1 0 -1 1 2 0 1

1 0 0 1 -1 0 1 1 0 2

1 1 1 0 1 1 -1 2 1 1

Example: Learning the logical operator AND

21Guide to Intelligent Data Science Second Edition, 2020

𝒙 t y ∆𝑤1 ∆𝑤2 ∆b 𝑤1
𝑛𝑒𝑤 𝑤2

𝑛𝑒𝑤 𝑏𝑛𝑒𝑤

2 1 1

Epoch 4

0 0 0 0 0 0 0 2 1 1

0 1 0 0 0 0 0 2 1 1

1 0 0 1 -1 0 1 1 1 2

1 1 1 0 1 1 -1 2 2 1

𝒙 t y ∆𝑤1 ∆𝑤2 ∆b 𝑤1
𝑛𝑒𝑤 𝑤2

𝑛𝑒𝑤 𝑏𝑛𝑒𝑤

2 2 1

Epoch 5

0 0 0 0 0 0 0 2 2 1

0 1 0 1 0 -1 1 2 1 2

1 0 0 0 0 0 0 2 1 2

1 1 1 1 0 0 0 2 1 2

Example: Learning the logical operator AND

22Guide to Intelligent Data Science Second Edition, 2020

𝒙 t y ∆𝑤1 ∆𝑤2 ∆b 𝑤1
𝑛𝑒𝑤 𝑤2

𝑛𝑒𝑤 𝑏𝑛𝑒𝑤

2 1 2

Epoch 6

0 0 0 0 0 0 0 2 1 2

0 1 0 0 0 0 0 2 1 2

1 0 0 0 0 0 0 2 1 2

1 1 1 1 0 0 0 2 1 2

Perceptron Convergence

If, for a given data set with two classes, there exists a perceptron that can

classify all patterns correctly, then the delta rule will adjust the weights and

the threshold after a finite number of steps in such way that all patterns are

classified correctly.

What classification problems can a perceptron solve?

Linear separability

23

− Consider a perceptron with two inputs.

− Let 𝑦 be the output of the perceptron for input (𝑥1, 𝑥2)

− Then:

𝑦 = 1 ⟺ 𝑤1 ∙ 𝑥1 + 𝑤2 ∙ 𝑥2 > 𝑏

⟺ 𝑥2 > −
𝑤1
𝑤2

𝑥1 +
𝑏

𝑤2

− The perceptron output is 1 if and only if the input vector (𝑥1, 𝑥2) is above

the line:

𝑦 = −
𝑤1
𝑤2

𝑥 +
𝑏

𝑤2

Guide to Intelligent Data Science Second Edition, 2020

𝑦 = −
𝑤1
𝑤2

𝑥 +
𝑏

𝑤2

Linear Separability

24Guide to Intelligent Data Science Second Edition, 2020

𝑥1

class 1

class 0

𝑥2

The parameters 𝑤1, 𝑤2, define the line. All input patterns above this

line are assigned to class 1, all input patterns below the line to class 0.

Linear Separability in hyperspaces

25

𝑦 𝒙 = 𝑤0 + ∑𝑖=1
𝑛 𝑤𝑖 𝑥𝑖= 𝑤0 + 𝒘𝑇 ⋅ 𝒙 = 𝑤0 + 𝒙 𝒘 cos 𝒘,𝒙

Guide to Intelligent Data Science Second Edition, 2020

Perceptrons implements hyperplanes in the feature space

𝒘

cos 𝒘,𝒙 < 0

cos 𝒘,𝒙 > 0

Linear Separability

26

− A Perceptron with n input neurons can classify all examples from a

dataset with n input variables and two classes correctly, if there exists a

hyperplane separating the two classes

− Such classification problems are called linearly separable

− A Perceptron can only solve linearly separable problems

Guide to Intelligent Data Science Second Edition, 2020

What can a single Perceptron do?

1

10

1 0

00

1

1

10

0

?

Example: The exclusive OR (XOR) defines a classification task

which is not linearly separable.

OR AND

XOR

Guide to Intelligent Data Science Second Edition, 2020 27

Adding one more layer

1

10

0

𝑥1

𝑥2

XOR

The exclusive OR (XOR) can be solved adding one more layer

x y𝑥1 𝑥2

𝑜2𝑜1

0 1

1

0

𝑜1

𝑜2

Guide to Intelligent Data Science Second Edition, 2020 28

FeedForward Neural

Networks

29Guide to Intelligent Data Science Second Edition, 2020

Multi-Layer Perceptron (MLP)

30

− A Perceptron with more than one layer is a Multi-Layer Perceptron

(MLP)

− A MLP is a neural network with:

− an input layer,

− one or more hidden layers, and

− an output layer

− Connections exist only between neurons from one layer to the next

layer

Guide to Intelligent Data Science Second Edition, 2020

Bias as weight for a constant input

Biological Neuron Biological Neural Networks

∑ σf()

𝑤2

𝑤1
𝑏

𝑦 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏)

Artificial Neuron (Perceptron)

𝑎(𝒙) =

𝑖=0

𝑛

𝑥𝑖𝑤𝑖

𝑥1

𝑥2

y

𝑏 = 𝑤0

𝑥0 = +1

𝑏 = 𝑤0

𝑦(𝒙) = 𝑓(

𝑖=0

𝑛

𝑥𝑖𝑤𝑖)

• Neuron bias can be considered

as a weight 𝑤0 to a constant

input 𝑥0 = +1

Guide to Intelligent Data Science Second Edition, 2020 31

𝑥1

y

1

2

1 2

2

1
1

1− 1−

2

1−

1−1

2

1
− ?

MLP: Example

𝑥1 𝑥2

1

𝑥2

b

b

Guide to Intelligent Data Science Second Edition, 2020 32

𝑥1

y

1

2

1 2

2

1
1

1−

MLP: Example

𝑥1 𝑥2

1

𝑥2

1 +
1

2
𝑥 − 𝑦 > 0

1 +
1

2
𝑥 − 𝑦 < 0 =0

=1

Guide to Intelligent Data Science Second Edition, 2020 33

𝑥1

y

1

2

1 2

MLP: Example

𝑥1 𝑥2

1

𝑥2 =0

=1

2 − 𝑥 − 𝑦 > 0

2 − 𝑥 − 𝑦 < 0

=0=1

1 +
1

2
𝑥 − 𝑦 > 0

1 +
1

2
𝑥 − 𝑦 < 0

1−

2

1−

Guide to Intelligent Data Science Second Edition, 2020 34

𝑥1

y

1

2

1 2

MLP: Example

𝑥1 𝑥2

1

𝑥2 =0

=1

=0=1

- −
1

2
>0

1−1

2

1
−

Guide to Intelligent Data Science Second Edition, 2020 36

𝑥1

y

1

2

1 2

MLP: Example

𝑥1 𝑥2

1

𝑥2 =0

=1

=0=1

- −
1

2
>0

1−1

2

1
−

2

1
1

1− 1−

2

1− 2 − 𝑥 − 𝑦 > 0 2 − 𝑥 − 𝑦 < 0

1 +
1

2
𝑥 − 𝑦 > 0

1 +
1

2
𝑥 − 𝑦 < 0

Guide to Intelligent Data Science Second Edition, 2020 37

Biological vs. Perceptron

Biological Neuron Biological Neural Networks

∑ σf()

𝑤2

𝑤1
𝑏

𝑦 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏)

Artificial Neuron (Perceptron) Artificial Neural Networks
(Multilayer Perceptron, MLP)

𝑎(𝒙) =

𝑖=0

𝑛

𝑥𝑖𝑤𝑖

𝑥1

𝑥2

y

𝑥1

𝑥2

𝑥3

𝑥4

y

𝑏 = 𝑤0

𝑥0 = +1

𝑏 = 𝑤0

𝑦(𝒙) = 𝑓(

𝑖=0

𝑛

𝑥𝑖𝑤𝑖)

Guide to Intelligent Data Science Second Edition, 2020 38

MLP: Example of Architecture / Topology

− Let‘s see an example of a MLP

− 3 layers:

− 1 input layer with m=2 inputs

− 1 hidden layer with h=3 hidden neurons

− 1 output layer with n=2 output neurons

− All feed-forward connections: from a neuron only to neurons in the next

layer

− Fully-connected: that is each neuron in one layer is connected to all

neurons in the next layers

fully connected

feed forward

neural networks

Guide to Intelligent Data Science Second Edition, 2020 39

Feed-Forward Neural Networks (FFNN)

Input

Layer #1

Hidden

Layer #2

Output

Layer #3
Forward pass:

𝑜𝑗
2 = 𝑓(

𝑖=1

𝑛

𝑤𝑗,𝑖
2 𝑥𝑖)

𝑦𝑘 = 𝑓(

𝑗=1

ℎ

𝑤𝑘,𝑗
3 𝑜𝑗

2)

𝑦𝑘 = 𝑓(

𝑗=1

ℎ

𝑤𝑘,𝑗
3 𝑓(

𝑖=1

𝑛

𝑤𝑗,𝑖
2 𝑥𝑖))

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑤2,1
2

𝑤3,1
2

𝑤1,2
2

𝑤2,2
2

𝑤3,2
2

𝑤1,1
3

𝑤1,2
3

𝑊1,3
3

𝑤1,1
2

𝑦1𝑥1

𝑥2

𝑜1
2

𝑜2
2

𝑜3
2

∑ 𝑓 𝑦2

𝑤2,1
3

𝑤2,2
3

𝑤2,3
3

To layer #3
To neuron

#3 in next

layer

From

neuron #2

in previous

layer

#1

#2

#3

#1

#2

m=2 inputs h=3 units n=2 units

Guide to Intelligent Data Science Second Edition, 2020 40

Same with Matrix Notations

Forward pass:

𝒐 = 𝑓 𝑊𝑥
2𝒙

𝑦 = 𝑓(𝑊𝑦
3𝒐)

𝑦 = 𝑓(𝑊𝑦
3𝑓 𝑊𝑥

2𝒙)

𝑓() = activation function

Input

Layer #1

Hidden

Layer #2

Output

Layer #3
m=2 inputs h=3 units n=2 units

𝑥1

𝑥2

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑𝑜1
2

𝑜2
2

𝑜3
2

∑ 𝑓 𝑦1

∑ 𝑓 𝑦2

Guide to Intelligent Data Science Second Edition, 2020 41

Frequently used activation functions

Sigmoid Tanh Rectified Linear Unit (ReLU)

𝑓 𝑎 =
1

1 + 𝑒−ℎ𝑎 𝑓 𝑎 =
𝑒2ℎ𝑎 − 1

𝑒2ℎ𝑎 + 1
𝑓 𝑎 = 𝑚𝑎𝑥 0, ℎ𝑎

Guide to Intelligent Data Science Second Edition, 2020 42

Other Neural Architectures

completely

connected

example:

- associative

neural network

- Hopfield

feedforward

(directed, a-cyclic)

example:

- Multi Layer Perceptron

- Auto-encoder MLP

recurrent

(feedback connections)

example:

-Recurrent Neural

Network (for time

series recognition)

Guide to Intelligent Data Science Second Edition, 2020 43

BackPropagation

44Guide to Intelligent Data Science Second Edition, 2020

Learning Algorithm

− Problem: How do we automatically adjust the weights (and thresholds)

for the neurons of the hidden layer?

− Solution: gradient descent

− Does not work with binary (non-differentiable) threshold function as

activation function for the neurons.

− Activation function must be a differentiable function

Guide to Intelligent Data Science Second Edition, 2020 45

Training of a Feed Forward Neural Network - MLP

− Teach (ensemble of) neuron(s) a desired input-output behavior.

− Show examples from the training set repeatedly

− Networks adjusts parameters to fit underlying function

− topology

− weights

− internal functional parameters

Guide to Intelligent Data Science Second Edition, 2020 46

Error Function

Forward pass:

𝒐 = 𝑓 𝑊𝑥
2𝒙

𝑦 = 𝑓(𝑊𝑦
3𝒐)

Network

output

value k Target

value k

𝐸 =
1

2

𝑥∈𝑇

𝑘=1

𝑛

𝑦𝑘 − 𝑡𝑘
2

𝑥1

𝑥2

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑𝑜1
2

𝑜2
2

𝑜3
2

∑ 𝑓 𝑦1

∑ 𝑓 𝑦2

Input

Layer #1

Hidden

Layer #2

Output

Layer #3
m=2 inputs h=3 units n=2 units

Number

of output

units

On the whole

Training set

Guide to Intelligent Data Science Second Edition, 2020 47

Learning Rule from Gradient Descent

− Adjust the weights based on the gradient descent technique, i.e.

proportionally to the gradient of the error function

𝒘(𝑡 + 1) = 𝒘(𝑡) + ∆𝒘(𝑡)

− with

∆𝒘 𝑡 = −𝜂 𝛻(𝐸(𝒘(𝑡)))

− with 𝜂 > 0 a non-zero learning rate

∆𝒘 𝑡 = −𝜂 𝛻 𝐸 𝒘 𝑡 = −𝜂
𝜕𝐸 𝒘(𝑡)

𝜕𝑤1
, … ,

𝜕𝐸 𝒘(𝑡)

𝜕𝑤𝑚

− So we really need to determine only:

∆𝑤𝑢,𝑣 = −𝜂
𝜕𝐸

𝜕𝑤𝑢,𝑣

− For each single weight of the network.

Guide to Intelligent Data Science Second Edition, 2020 48

Learning Rule from Gradient Descent

𝐸 =
1

2

𝑥∈𝑇

𝑘=1

𝑛

𝑦𝑘 − 𝑡𝑘
2

𝑥1

𝑥2

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑𝑜1
2

𝑜2
2

𝑜3
2

∑ 𝑓 𝑦1

∑ 𝑓 𝑦2

Input

Layer #1

Hidden

Layer #2

Output

Layer #3
m=2 inputs h=3 units n=2 units

Gradient descent

∆𝑤𝑢,𝑣 = −𝜂
𝜕𝐸

𝜕𝑤𝑢,𝑣

Guide to Intelligent Data Science Second Edition, 2020 49

... Some Calculations for the Output Layer

For each weight in the output layer:

∆𝑤𝑗𝑖
𝑜𝑢𝑡 = −𝜂

𝜕𝐸 𝒘𝑜𝑢𝑡

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡

𝜕𝐸

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 =

𝜕
1
2
∑𝑥∈𝑇∑𝑘=1

𝑛 𝑦𝑘 − 𝑡𝑘
2

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 =

1

2

𝑥∈𝑇

𝜕 𝑦𝑗 − 𝑡𝑗
2

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 =

=
𝑥∈𝑇

𝑦𝑗 − 𝑡𝑗
𝜕𝑦𝑗

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 =

𝑥∈𝑇
𝑦𝑗 − 𝑡𝑗

𝜕𝑓(𝑛𝑒𝑡𝑗)

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 =

= ∑𝑥∈𝑇 𝑦𝑗 − 𝑡𝑗
𝜕𝑓(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 = ∑𝑥∈𝑇 𝑦𝑗 − 𝑡𝑗 𝑓′(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 =

Net input to output neuron j

To output neuron j

From hidden neuron i

Guide to Intelligent Data Science Second Edition, 2020 50

𝛿𝑗
𝑜𝑢𝑡

... Some Calculations for the Output Layer

∆𝑤𝑗𝑖
𝑜𝑢𝑡 = −𝜂

𝑥∈𝑇
𝑦𝑗 − 𝑡𝑗 𝑓′ 𝑛𝑒𝑡𝑗 𝑜𝑖

ℎ𝑖𝑑𝑑𝑒𝑛= − 𝜂
𝑥∈𝑇

𝛿𝑗
𝑜𝑢𝑡 𝑜𝑖

ℎ𝑖𝑑𝑑𝑒𝑛

For each weight in the output layer:

∆𝑤𝑗𝑖
𝑜𝑢𝑡 = −𝜂

𝜕𝐸 𝒘𝑜𝑢𝑡

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡

𝜕𝐸

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 = ⋯ =

𝑥∈𝑇
𝑦𝑗 − 𝑡𝑗 𝑓′ 𝑛𝑒𝑡𝑗

𝜕 ∑𝑘′=1
ℎ 𝑤𝑗,𝑘′

𝑜𝑢𝑡𝑜𝑘′
ℎ𝑖𝑑𝑑𝑒𝑛

𝜕𝑤𝑗𝑖
𝑜𝑢𝑡 =

=
𝑥∈𝑇

𝑦𝑗 − 𝑡𝑗 𝑓′(𝑛𝑒𝑡𝑗) 𝑜𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

Number of neurons

in previous hidden

layer

Output of neuron i

in previous hidden

layer

Guide to Intelligent Data Science Second Edition, 2020 51

Update formula for weights to the output layer after all samples in T

− Final formula to update the weight 𝑤𝑗𝑖
𝑜𝑢𝑡, after all training samples in T

have passed:

∆𝑤𝑗𝑖
𝑜𝑢𝑡 = −𝜂

𝑥∈𝑇
𝛿𝑗
𝑜𝑢𝑡 𝑜𝑖

ℎ𝑖𝑑𝑑𝑒𝑛

𝛿𝑗
𝑜𝑢𝑡 = 𝑦𝑗 − 𝑡𝑗 𝑓′ 𝑛𝑒𝑡𝑗

− 𝑤𝑗𝑖

𝑤𝑗𝑖
𝑜𝑢𝑡

𝛿𝑗
𝑜𝑢𝑡

𝑜𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

Guide to Intelligent Data Science Second Edition, 2020 52

In the hidden layers...

− Now, where do we get the target values for the hidden neurons?

− Let’s continue with gradient descent:

∆𝑤𝑖𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 = −𝜂

𝜕𝐸

𝜕𝑤𝑖𝑗
ℎ𝑖𝑑𝑑𝑒𝑛

𝑜𝑗
ℎ𝑖𝑑𝑑𝑒𝑛

𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

𝑥𝑖 𝑤𝑗𝑘
𝑜𝑢𝑡

𝛿𝑘
𝑜𝑢𝑡

Guide to Intelligent Data Science Second Edition, 2020 53

… some Calculations for the Hidden Layer …

∆𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛 = − 𝜂

𝜕
1
2
∑𝑥∈𝑇∑𝑘=1

𝑛 𝑦𝑘 − 𝑡𝑘
2

𝜕𝑤𝑖𝑗
ℎ𝑖𝑑𝑑𝑒𝑛

= −
𝜂

2

𝑥∈𝑇

𝑘=1

𝑛
𝜕 𝑓 𝑛𝑒𝑡𝑘

𝑜𝑢𝑡 − 𝑡𝑘
2

𝜕𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

… = −𝜂∑𝑥∈𝑇∑𝑘=1
𝑛 𝑓 𝑛𝑒𝑡𝑘

𝑜𝑢𝑡 − 𝑡𝑘 𝑓′ 𝑛𝑒𝑡𝑘
𝑜𝑢𝑡

𝜕 ∑
𝑗′=1
ℎ 𝑤

𝑗′𝑘
𝑜𝑢𝑡𝑓 ∑

𝑖′=1
𝑚 𝑤

𝑖′𝑗′
ℎ𝑖𝑑𝑑𝑒𝑛∙𝑥

𝑖′

𝜕𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

… = −𝜂∑𝑥∈𝑇∑𝑘=1
𝑛 𝛿𝑘

𝑜𝑢𝑡
𝜕 ∑

𝑗′=1
ℎ 𝑤

𝑗′𝑘
𝑜𝑢𝑡𝑓 ∑

𝑖′=1
𝑚 𝑤

𝑖′𝑗′
ℎ𝑖𝑑𝑑𝑒𝑛∙𝑥

𝑖′

𝜕𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

… = −
𝜂

2
∑𝑥∈𝑇∑𝑘=1

𝑛 2 𝑓 𝑛𝑒𝑡𝑘
𝑜𝑢𝑡 − 𝑡𝑘

𝜕 𝑓 𝑛𝑒𝑡𝑘
𝑜𝑢𝑡 −𝑡𝑘

𝜕𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

… = −𝜂∑𝑥∈𝑇∑𝑘=1
𝑛 𝑓 𝑛𝑒𝑡𝑘

𝑜𝑢𝑡 − 𝑡𝑘 𝑓′ 𝑛𝑒𝑡𝑘
𝑜𝑢𝑡 𝜕𝑛𝑒𝑡𝑘

𝑜𝑢𝑡

𝜕𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

… = −𝜂∑𝑥∈𝑇∑𝑘=1
𝑛 𝑓 𝑛𝑒𝑡𝑘

𝑜𝑢𝑡 − 𝑡𝑘 𝑓′ 𝑛𝑒𝑡𝑘
𝑜𝑢𝑡

𝜕 ∑
𝑗′=1
ℎ 𝑤

𝑗′𝑘
𝑜𝑢𝑡 𝑜𝑗′

ℎ𝑖𝑑𝑑𝑒𝑛

𝜕𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

… = −𝜂∑𝑥∈𝑇∑𝑘=1
𝑛 𝛿𝑘

𝑜𝑢𝑡 𝑤𝑗𝑘
𝑜𝑢𝑡

𝜕𝑓 ∑
𝑖′=1
𝑚 𝑤

𝑖′𝑗
ℎ𝑖𝑑𝑑𝑒𝑛∙𝑥

𝑖′

𝜕𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

If just one hidden layer

Guide to Intelligent Data Science Second Edition, 2020 54

… some Calculations for the Hidden Layer …

… = −𝜂∑𝑥∈𝑇∑𝑘=1
𝑛 𝛿𝑘

𝑜𝑢𝑡 𝑤𝑗𝑘
𝑜𝑢𝑡 𝑓′ 𝑛𝑒𝑡𝑗

ℎ𝑖𝑑𝑑𝑒𝑛 ∙ 𝑥𝑖

… = −𝜂∑𝑥∈𝑇 𝛿𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 ∙ 𝑥𝑖

… = −𝜂∑𝑥∈𝑇∑𝑘=1
𝑛 𝛿𝑘

𝑜𝑢𝑡 𝑤𝑗𝑘
𝑜𝑢𝑡

𝜕𝑓 ∑
𝑖′=1
𝑚 𝑤

𝑖′𝑗
ℎ𝑖𝑑𝑑𝑒𝑛∙𝑥

𝑖′

𝜕𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

… = −𝜂∑𝑥∈𝑇∑𝑘=1
𝑛 𝛿𝑘

𝑜𝑢𝑡 𝑤𝑗𝑘
𝑜𝑢𝑡 𝑓′ ∑𝑖′=1

𝑚 𝑤𝑖′𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 ∙ 𝑥𝑖′ ∙ 𝑥𝑖

∆𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛 = − 𝜂

𝑥∈𝑇

𝛿𝑗
ℎ𝑖𝑑𝑑𝑒𝑛𝑥𝑖

𝛿𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 =

𝑘=1

𝑛

𝛿𝑘
𝑜𝑢𝑡 𝑤𝑗𝑘

𝑜𝑢𝑡 𝑓′ 𝑛𝑒𝑡𝑗
ℎ𝑖𝑑𝑑𝑒𝑛

As for weights to output neurons

𝑜𝑗
ℎ𝑖𝑑𝑑𝑒𝑛

𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

𝑥𝑖 𝑤𝑗𝑘
𝑜𝑢𝑡

𝛿𝑘
𝑜𝑢𝑡

𝛿𝑘
𝑜𝑢𝑡 is back-propagated

from output to input

Guide to Intelligent Data Science Second Edition, 2020 55

𝑜𝑗
ℎ𝑖𝑑𝑑𝑒𝑛

𝑤𝑗𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

𝑥𝑖 𝑤𝑗𝑘
𝑜𝑢𝑡

𝛿𝑘
𝑜𝑢𝑡

Error BackPropagation or Generalized Delta Rule

Update of weights to the output layer:

∆𝑤𝑗𝑖
𝑜𝑢𝑡 = −𝜂

𝑥∈𝑇
𝛿𝑗
𝑜𝑢𝑡 𝑜𝑖

ℎ𝑖𝑑𝑑𝑒𝑛

with

𝛿𝑗
𝑜𝑢𝑡 = 𝑦𝑗 − 𝑡𝑗 𝑓′ 𝑛𝑒𝑡𝑗

And update of weights to hidden layers:

∆𝑤𝑗𝑖
𝑙 = − 𝜂

𝑥∈𝑇

𝛿𝑗
𝑙 𝑜𝑖

𝑙−1

With

𝛿𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 =

𝑘=1

𝑛

𝛿𝑘
𝑙+1 𝑤𝑗𝑘

𝑙+1 𝑓′ 𝑛𝑒𝑡𝑗
𝑙

Recursive equation for updating the weights:

Update the weights to the neuron in the output layer first and then go back layer by layer and update the
corresponding weights.

Current

hidden

layer

Previous layer

Next layer

Guide to Intelligent Data Science Second Edition, 2020 56

Update formula for weights after each sample in T

− Final formula to update the weight 𝑤𝑗𝑖
𝑜𝑢𝑡, after one single training sample in T :

𝐸 =
1

2

𝑘=1

𝑛

𝑦𝑘 − 𝑡𝑘
2

∆𝑤𝑗𝑖
𝑙 = − 𝜂 𝛿𝑗

𝑙 𝑜𝑖
𝑙−1

𝛿𝑗
𝑙 = ൞

𝑦𝑗 − 𝑡𝑗 𝑓′ 𝑛𝑒𝑡𝑗
𝑙 𝑙 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟

∑𝑘=1
𝑛 𝛿𝑘

𝑙+1 𝑤𝑗𝑘
𝑙+1 𝑓′ 𝑛𝑒𝑡𝑗

𝑙 𝑙 = ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

𝑤𝑗𝑖
𝑜𝑢𝑡

𝛿𝑗
𝑜𝑢𝑡

𝑜𝑖
ℎ𝑖𝑑𝑑𝑒𝑛

Error function after

each training sample

No sum on

training set T

Same as before

Guide to Intelligent Data Science Second Edition, 2020 57

Step 1. Forward Pass

Input

Layer

Hidden

Layer

Output

Layer

1. Forward pass:

𝑜𝑗
2 = 𝑓(

𝑖=1

𝑛

𝑤𝑗𝑖
2 𝑥𝑖)

𝑦𝑘 = 𝑓(

𝑗=1

ℎ

𝑤𝑘𝑗
3 𝑜𝑗

2)

𝑥1

𝑥2

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑𝑜1
2

𝑜2
2

𝑜3
2

∑ 𝑓 𝑦1

∑ 𝑓 𝑦2

Guide to Intelligent Data Science Second Edition, 2020 58

Step 2. Backward Pass - 𝛿

Input

Layer

Hidden

Layer

Output

Layer

2. Backward pass:

δout

𝛿𝑗
𝑙 = ቐ

𝑦𝑗 − 𝑡𝑗 𝑓′ 𝑛𝑒𝑡𝑗 𝑙 = 𝑙𝑎𝑠𝑡 𝑙𝑎𝑦𝑒𝑟

∑𝑘∈𝐿𝑤𝑗𝑘 𝛿𝑘
𝑙+1 𝑓′ 𝑛𝑒𝑡𝑗 𝑙 = ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

𝑥1

𝑥2

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑𝑜1
2

𝑜2
2

𝑜3
2

∑ 𝑓 δ1
𝑜𝑢𝑡

∑ 𝑓 δ2
𝑜𝑢𝑡

This is 𝑜𝑗 1 − 𝑜𝑗 for a

sigmoid activation function

δ2
ℎ𝑖𝑑𝑑𝑒𝑛

δ3
ℎ𝑖𝑑𝑑𝑒𝑛

δ1
ℎ𝑖𝑑𝑑𝑒𝑛

Guide to Intelligent Data Science Second Edition, 2020

Step 3: Learning after each training pattern

Input

Layer

Hidden

Layer

Output

Layer

3. Weight Update

after each training

example:δout

𝑥1

𝑥2

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑𝑜1
2

𝑜2
2

𝑜3
2

∑ 𝑓 δ1
𝑜𝑢𝑡

∑ 𝑓 δ2
𝑜𝑢𝑡

δ2
ℎ𝑖𝑑𝑑𝑒𝑛

δ3
ℎ𝑖𝑑𝑑𝑒𝑛

δ1
ℎ𝑖𝑑𝑑𝑒𝑛

∆𝑤𝑗𝑖
𝑙 = −η 𝛿𝑗

𝑙 𝑜𝑖
𝑙−1

𝑤𝑗𝑖
𝑙 𝑡 + 1 = 𝑤𝑗𝑖

𝑙 𝑡 + ∆𝑤𝑗𝑖
𝑙∆𝑤𝑗𝑘

𝑜𝑢𝑡 = −η 𝛿𝑘
𝑜𝑢𝑡 𝑜𝑗

ℎ𝑖𝑑𝑑𝑒𝑛∆𝑤𝑖𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 = −η 𝛿𝑗

ℎ𝑖𝑑𝑑𝑒𝑛𝑥𝑖

𝑖 = 1, … ,𝑚

𝑗 = 1, … , ℎ

𝑗 = 1, … , ℎ

𝑘 = 1, … , 𝑛

inputs

hidden units # outputs

Guide to Intelligent Data Science Second Edition, 2020

Step 3: Learning after all training patterns

Input

Layer

Hidden

Layer

Output

Layer

4. Weight Update

after all training

examples:δout

𝑥1

𝑥2

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑𝑜1
2

𝑜2
2

𝑜3
2

∑ 𝑓 δ1
𝑜𝑢𝑡

∑ 𝑓 δ2
𝑜𝑢𝑡

δ2
ℎ𝑖𝑑𝑑𝑒𝑛

δ3
ℎ𝑖𝑑𝑑𝑒𝑛

δ1
ℎ𝑖𝑑𝑑𝑒𝑛

∆𝑤𝑗𝑖
𝑙 = − 𝜂

𝑥∈𝑇

𝛿𝑗
𝑙 𝑜𝑖

𝑙−1

𝑤𝑗𝑖
𝑙 𝑡 + 1 = 𝑤𝑗𝑖

𝑙 𝑡 + ∆𝑤𝑗𝑖
𝑙∆𝑤𝑗𝑘

𝑜𝑢𝑡 = −η

𝑥∈𝑇

𝛿𝑘
𝑜𝑢𝑡 𝑜𝑗

ℎ𝑖𝑑𝑑𝑒𝑛∆𝑤𝑖𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 = −η

𝑥∈𝑇

𝛿𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 𝑥𝑖

𝑖 = 1, … ,𝑚

𝑗 = 1, … , ℎ

𝑗 = 1, … , ℎ

𝑘 = 1, … , 𝑛

inputs

hidden units # outputs

Learning rate

Guide to Intelligent Data Science Second Edition, 2020 61

Training the bias values

− Remember?

− Bias values can be considered as special weights to constant inputs +1

− Therefore biases are trained together with all other weights

∑ σf()

𝑤2

𝑤1
𝑏

𝑦 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏)

Artificial Neuron (Perceptron)

𝑎(𝒙) =

𝑖=0

𝑛

𝑥𝑖𝑤𝑖

𝑥1

𝑥2

y

𝑏 = 𝑤0

𝑥0 = +1

𝑏 = 𝑤0

𝑦(𝒙) = 𝑓(

𝑖=0

𝑛

𝑥𝑖𝑤𝑖)

• Neuron bias can be considered

as a weight 𝑤0 to a constant

input 𝑥0 = +1

Guide to Intelligent Data Science Second Edition, 2020 62

Training: Batch vs. Online

− Offline Training: Weight update after all training patterns

− correct

− computationally expensive and slow

− works with reasonably large learning rates (fewer updates!)

− Online (Stochastic) Training: Weight update after each training pattern

− approximation (can in theory run into oscillations)

− faster (fewer epochs!)

− smaller learning rates necessary

− Batch Training: Weight update after a batch of training patterns

− A compromise between the two

Guide to Intelligent Data Science Second Edition, 2020 63

Sigmoid Activation Function

− The Sigmoid Activation Function has one really nice property (among

others):

𝑓′ 𝑎 =
𝜕

𝜕𝑎

1

1 + 𝑒−ℎ𝑎
= −

𝑒−ℎ𝑎

1 + 𝑒−ℎ𝑎 2
= … = 𝑓 𝑎 1 − 𝑓 𝑎

− We can compute the derivative 𝑓′ 𝑎 simply from 𝑓 𝑎 !

Guide to Intelligent Data Science Second Edition, 2020 64

BackPropagation Example

65Guide to Intelligent Data Science Second Edition, 2020

BackPropagation example

Guide to Intelligent Data Science Second Edition, 2020 66

BackPropagation Example

Guide to Intelligent Data Science Second Edition, 2020 67

BackPropagation Example

Guide to Intelligent Data Science Second Edition, 2020 68

BackPropagation Example

Guide to Intelligent Data Science Second Edition, 2020 69

BackPropagation Example

Guide to Intelligent Data Science Second Edition, 2020 70

BackPropagation Example

Guide to Intelligent Data Science Second Edition, 2020 71

Variations of

BackPropagation

72Guide to Intelligent Data Science Second Edition, 2020

Local Minima and Learning Rate

− Backpropagation as a gradient descent technique can only find a

local minimum.

− Training the networks with different random initialisations can lead to

a different weight configuration on a different local minimum.

− The learning rate 𝜂 defines the step width of the gradient descent

technique.

− A very large 𝜂 leads to skipping minima or oscillations.

− A very small 𝜂 leads to starving, i.e. slow convergence or even convergence before

the (local) minimum is reached.

Guide to Intelligent Data Science Second Edition, 2020 73

Learning Rate η

η too small η too large η just right

Guide to Intelligent Data Science Second Edition, 2020 74

FFNNs and Overfitting

− Feed-Forward Neural Networks can potentially describe very complex

relationships

− FFNNs are very simple but very flexible neural architectures

− It is easy to:

− Expand the architecture by adding more units/layers

− Experiment with new activation functions

− Too many parameters!

− Danger of fitting training data too well: Overfitting

− Modeling of particularities in training data instead of underlying concept

 Modeling of artifacts or outliers

Guide to Intelligent Data Science Second Edition, 2020 75

Back-Propagation: Optimizations

− Overfitting can be prevented by keeping the weights small

− Weight Decay:

− push all weights to zero

− only those weights that are really needed will “survive”

− Momentum Term:

− increase weight updates as long as they have the same sign

− Resilient Backpropagation (or RPROP):

− estimate optimum for weights based on assumption that the error surface is a

polynomial.

− Regularization:

− a regularization term is added to the Error function as to force the weights to

stay small or few.

Guide to Intelligent Data Science Second Edition, 2020 76

Momentum Term

− Introduce a momentum term:

− For the weight update, the previous weight update is taken into account:

∆𝑝𝑊 𝑢, 𝑣 = 𝜂 𝛿𝑣
𝑝
𝑜𝑢
𝑝
+ 𝛽 ∆𝑞𝑊 𝑢, 𝑣

− ∆𝑞𝑊 𝑢, 𝑣 is the weight update at the previous step 𝑞 of the gradient
descent algorithm.

− If weight is updated continuously in the same direction, the weight
update increases, otherwise it decreases.

− Typical choices: 𝜂 = 0.2, 𝛽 = 0.8

Guide to Intelligent Data Science Second Edition, 2020 77

Knowledge Extraction and MLPs

− MLPs are powerful but black boxes

− Rule extraction only possible in some cases

− VI-Analysis (interval propagation)

− extraction of decision trees

− Problems:

− Global influence of each neuron

− Interpretation of hidden layer(s) complicated

− Possible Solution:

− Local activity of neurons in hidden layer: Local Basis Function Networks

Guide to Intelligent Data Science Second Edition, 2020 78

BackPropagation Issues

79

− Usually, weights are not updated after a whole epoch, i.e. after all

patterns have been presented once (offline training), or after the

presentation of each input pattern (online training, but after a batch of

input patterns (batch training).

− There is no general rule on how to choose the number of hidden layers

and the size of the hidden layers.

− Small neural networks might not be flexible enough to fit the data.

− Large neural networks tend to overfit the data (note: Deep Learning...).

− The steepness of the activation function is usually fixed and is not

adjusted.

− A perceptron learns only in those regions where the activation function

is not close to zero or one, otherwise the derivative is almost zero (the

problem of the vanishing gradient).

Guide to Intelligent Data Science Second Edition, 2020

The autoencoder architecture

80

− Dimensionality reduction

− Input and output are identical, i.e. the neural

network should learn the identity function.

(Auto-associative network)

− Introduce a hidden layer with only ℎ < 𝑛
neurons: the bottleneck.

− Train the neural network with the data.

− After training, input the data into the

network and use the outputs of the

bottleneck neurons as a representation of

the input data in a lower dimension

− If ℎ = 2 then the outputs of the bottleneck

neurons represent the two dimensions for

the graphical representation of the data

Guide to Intelligent Data Science Second Edition, 2020

The autoencoder architecture

81

− Anomaly Detection

− Input and output are identical, i.e. the neural

network should learn the identity function.

(Auto-associative network)

− Train the neural network with the data.

− After training, input the data into the

network and calculate the distance between

input and output layer.

− If input data is similar to training data, then

distance is small.

− If input data is an anomaly not present in

the training data, then distance is large

Guide to Intelligent Data Science Second Edition, 2020

Other Neural Network Topics

82

− (Hard/Soft) Competitive Learning

− Learning Vector Quantization

− Self Organizing Maps

− Radial (and other) Basis Function Networks

− Many connections to Kernel Methods and Support Vector Machines...

Guide to Intelligent Data Science Second Edition, 2020

Summary

83

− What is a Perceptron?

− Why do we need MLPs?

− The BackPropagation algorithm to train the hidden layers

− Issues with MLPs and BackPropgation

− The autoencoder architecture

Guide to Intelligent Data Science Second Edition, 2020

KNIME Deep Learning

Keras Extension

84Guide to Intelligent Data Science Second Edition, 2020

Keras + KNIME

85

− KNIME Deep Learning Extension

builds on top of the Keras Libraries

− The Keras libraries build on top of

TensorFlow

− Deep Learning libraries from

TensorFlow and Keras are accessible

via Python ...

− ... And KNIME with the Deep

Learning Keras Integration.

Guide to Intelligent Data Science Second Edition, 2020

With
KNIME GUI

Installation

86Guide to Intelligent Data Science Second Edition, 2020

Installations

87

− Deep Learning in KNIME Analytics Platform comes with a specific

integration. Few simple steps are necessary to get it up and running.

− On your machine:

− Anaconda with Python3 correctly installed

− Extensions installed on KNIME Analytics Platform

− KNIME Deep Learning - Keras Integration

− KNIME TensorFlow Integration

Guide to Intelligent Data Science Second Edition, 2020

NOTE: This is a just quick start guide to start using
Deep Learning with your KNIME Analytics

Platform. If you are experiencing issues or want to
customize your installation, please refer to KNIME

Deep Learning Integration Installation Guide

https://www.anaconda.com/products/individual
https://kni.me/e/XOee1uZPrzE36EPH
https://kni.me/e/KBQCLjzo-9GAFWAi
https://docs.knime.com/latest/deep_learning_installation_guide/index.html#_introduction

Installation of KNIME Extensions

88

Drag and drop the icon into the
KNIME Workbench

Guide to Intelligent Data Science Second Edition, 2020

A window will pop up asking to
install the Extension

After installation you will be asked
to restart KNIME

Configuration

89

− Go to the Python Deep Learning Preference page located at

File > Preferences

− From the window that pops up, select KNIME > Python Deep Learning

from the list on the left.

Guide to Intelligent Data Science Second Edition, 2020

Configuration

90Guide to Intelligent Data Science Second Edition, 2020

NOTE: You can also select an existing
Python Deep Learning environment

from the drop down menu, if you
have already set up one

Provide the path to the folder containing
your Anaconda installation

Click on New Environment to
set up a new ready-to-go

environment containing all the
required dependencies

Configuration

91

− Provide a name for the new

environment

− Choose if you want to create a

new CPU or GPU environment

− This creates a new conda

environment containing all

required Python Deep Learning

dependencies

Guide to Intelligent Data Science Second Edition, 2020

Only choose GPU if you have a
TensorFlow compatible GPU available.
More information about Python Deep

Learning GPU support can be found here

https://docs.knime.com/2019-06/deep_learning_installation_guide/index.html#keras_gpu_support

Deep Learning Nodes

92Guide to Intelligent Data Science Second Edition, 2020

Layer Overview (optional)

93Guide to Intelligent Data Science Second Edition, 2020

Keras Input Layer

94

− Allows to define the input shape

− Use [x,y] for sequential data
− x = sequence length

− y = dimension of one element in the sequence

Guide to Intelligent Data Science Second Edition, 2020

Keras Dense Layer

95

− Important settings
− Number of Units

− Selection of the activation function

− Regularization support

− Can be used as hidden layer

and as output layer

− Tip: Add Name prefix if used as

output layer

Guide to Intelligent Data Science Second Edition, 2020

Simple Network Example

96Guide to Intelligent Data Science Second Edition, 2020

Keras Network Learner – Input Data Tab

97

− Select input columns for the network and correct conversion

− Conversion ”From Collection of Number (integer) to One-Hot Vector”

can be used to transform index encoding to one-hot encoding

Guide to Intelligent Data Science Second Edition, 2020

Keras Network Learner – Target Data

98

− Select target column and correct conversion

− Select a standard loss function

or define your custom loss

function

Guide to Intelligent Data Science Second Edition, 2020

Keras Network Learner – Options Tab

99

− Allows to define the training settings

− Important settings
− Epochs

− Training batch size

− Shuffle training data…

− Optimizer

Guide to Intelligent Data Science Second Edition, 2020

Learning Monitor View of the Keras Network Learner

100Guide to Intelligent Data Science Second Edition, 2020

Keras Network Executor

101Guide to Intelligent Data Science Second Edition, 2020

Different Option to Save a Trained Model

102

− The Keras Network Writer node saves

the trained model as .h5 file
knime://knime.workflow/<filename>

− Convert your model to a TensorFlow

Network for faster execution during

deployment and save it as .zip file using

the TensorFlow Writer node

Guide to Intelligent Data Science Second Edition, 2020

Index-based encoding and One-hot Encoding

103Guide to Intelligent Data Science Second Edition, 2020

Education Index

10th 0

11th 1

12th 2

Assoc-acdm 3

Assoc-voc 4

Bachelors 5

Doctorate 6

HS-grad 7

Masters 8

Prof-school 9

Some-college 10

10th 11th 12th Assoc-
admin

Asso
c-voc

Bach. Doc. HS-
grad

Masters Prof-
school

Some-
college

Masters 0 0 0 0 0 0 0 0 1 0 0

11th 0 1 0 0 0 0 0 0 0 0 0

Some-
college

0 0 0 0 0 0 0 0 0 0 1

Bach. 0 0 0 0 0 1 0 0 0 0 0

10th 1 0 0 0 0 0 0 0 0 0 0

Doc. 0 0 0 0 0 0 1 0 0 0 0

Prof-
school

0 0 0 0 0 0 0 0 0 1 0

HS-grad 0 0 0 0 0 0 0 1 0 0 0

Index-based One-hot Encoding

Normalization

104

− Input to NN must be in [0,1]

− Normalization is needed

Guide to Intelligent Data Science Second Edition, 2020

Practical Examples with

KNIME Analytics Platform

105Guide to Intelligent Data Science Second Edition, 2020

KNIME Workflows

106

− A multilayer perceptron with layers (4–8–3) is trained to classify the iris

data set using the backpropagation algorithm, as set in the Keras

Network Learner node

Guide to Intelligent Data Science Second Edition, 2020

Guide to Intelligent Data Science Second Edition, 2020

Thank you
Guide to Intelligent Data Science Second Edition, 2020

107

	Slide 1: Neural Networks
	Slide 2: Summary of this lesson
	Slide 3: Content of this lesson
	Slide 4: Datasets
	Slide 5: Classification vs. Regression
	Slide 6: Biological Neuron
	Slide 7: Artificial Neural Networks
	Slide 8: Biological Neural Networks
	Slide 9: Biological Neuron
	Slide 10: Perceptron
	Slide 11: McCulloch-Pitts Model of a neuron (1943)
	Slide 12: The Perceptron (Rosenblatt, 1958)
	Slide 13: Identifying the letter F
	Slide 14: Biological Neuron vs. Perceptron
	Slide 15: Perceptron Learning Algorithm
	Slide 16: The delta rule
	Slide 17: The delta rule
	Slide 18: The delta rule
	Slide 19: Example: Learning the logical operator AND
	Slide 20: Example: Learning the logical operator AND
	Slide 21: Example: Learning the logical operator AND
	Slide 22: Example: Learning the logical operator AND
	Slide 23: Linear separability
	Slide 24: Linear Separability
	Slide 25: Linear Separability in hyperspaces
	Slide 26: Linear Separability
	Slide 27: What can a single Perceptron do?
	Slide 28: Adding one more layer
	Slide 29: FeedForward Neural Networks
	Slide 30: Multi-Layer Perceptron (MLP)
	Slide 31: Bias as weight for a constant input
	Slide 32: MLP: Example
	Slide 33: MLP: Example
	Slide 34: MLP: Example
	Slide 36: MLP: Example
	Slide 37: MLP: Example
	Slide 38: Biological vs. Perceptron
	Slide 39: MLP: Example of Architecture / Topology
	Slide 40: Feed-Forward Neural Networks (FFNN)
	Slide 41: Same with Matrix Notations
	Slide 42: Frequently used activation functions
	Slide 43: Other Neural Architectures
	Slide 44: BackPropagation
	Slide 45: Learning Algorithm
	Slide 46: Training of a Feed Forward Neural Network - MLP
	Slide 47: Error Function
	Slide 48: Learning Rule from Gradient Descent
	Slide 49: Learning Rule from Gradient Descent
	Slide 50: ... Some Calculations for the Output Layer
	Slide 51: ... Some Calculations for the Output Layer
	Slide 52: Update formula for weights to the output layer after all samples in T
	Slide 53: In the hidden layers...
	Slide 54: … some Calculations for the Hidden Layer …
	Slide 55: … some Calculations for the Hidden Layer …
	Slide 56: Error BackPropagation or Generalized Delta Rule
	Slide 57: Update formula for weights after each sample in T
	Slide 58: Step 1. Forward Pass
	Slide 59: Step 2. Backward Pass - delta
	Slide 60: Step 3: Learning after each training pattern
	Slide 61: Step 3: Learning after all training patterns
	Slide 62: Training the bias values
	Slide 63: Training: Batch vs. Online
	Slide 64: Sigmoid Activation Function
	Slide 65: BackPropagation Example
	Slide 66: BackPropagation example
	Slide 67: BackPropagation Example
	Slide 68: BackPropagation Example
	Slide 69: BackPropagation Example
	Slide 70: BackPropagation Example
	Slide 71: BackPropagation Example
	Slide 72: Variations of BackPropagation
	Slide 73: Local Minima and Learning Rate
	Slide 74: Learning Rate eta
	Slide 75: FFNNs and Overfitting
	Slide 76: Back-Propagation: Optimizations
	Slide 77: Momentum Term
	Slide 78: Knowledge Extraction and MLPs
	Slide 79: BackPropagation Issues
	Slide 80: The autoencoder architecture
	Slide 81: The autoencoder architecture
	Slide 82: Other Neural Network Topics
	Slide 83: Summary
	Slide 84: KNIME Deep Learning Keras Extension
	Slide 85: Keras + KNIME
	Slide 86: Installation
	Slide 87: Installations
	Slide 88: Installation of KNIME Extensions
	Slide 89: Configuration
	Slide 90: Configuration
	Slide 91: Configuration
	Slide 92: Deep Learning Nodes
	Slide 93: Layer Overview (optional)
	Slide 94: Keras Input Layer
	Slide 95: Keras Dense Layer
	Slide 96: Simple Network Example
	Slide 97: Keras Network Learner – Input Data Tab
	Slide 98: Keras Network Learner – Target Data
	Slide 99: Keras Network Learner – Options Tab
	Slide 100: Learning Monitor View of the Keras Network Learner
	Slide 101: Keras Network Executor
	Slide 102: Different Option to Save a Trained Model
	Slide 103: Index-based encoding and One-hot Encoding
	Slide 104: Normalization
	Slide 105: Practical Examples with KNIME Analytics Platform
	Slide 106: KNIME Workflows
	Slide 107: Thank you

