Support Vector Machines (SVM)

Michael R. Berthold - Chirstian Borgelt Frank Höppner: ETank Kawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition
"The key to artificial intelligence has always been the representation" -Jeff Hawkins

What are Support Vector Machines?

*This lesson refers to chapter 9 of the GIDS book

Support Vector Machines (more generally - Kernel Machines)

- Motivation
- Linear Classifiers
- Rosenblatt Learning Rule
- Kernel Methods and Support Vector Machines
- Dual Representation
- Maximal Margins
- Kernels
- Margin of Error and Variations
- Soft and Hard Margin Classifiers
- Multi-Class SVM
- Support Vector Regression

Datasets

- Datasets used : iris dataset

- Example Workflows:
- „SVM on iris dataset " https://kni.me/w/DTfbNITUngKQVF8v
- Normalization
- SVM

Motivation

- Main idea of Kernel Methods
- Embed data into suitable vector space
- Find linear classifier (or other linear pattern of interest) in new space
- Needed: a Mapping

$$
\Phi: x \in X \rightarrow \Phi(x) \in F
$$

- Key Assumptions:
- Information about relative position is often all that is needed by learning methods
- The inner products between points in the projected space can be computed in the original space using special functions (kernels).

Linear Classifiers

- Simple linear, binary classifier:

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}+b=\sum_{i=1}^{n} x_{i} w_{i}+b=b+\|\boldsymbol{w}\|\|\boldsymbol{x}\| \cos (\angle(\boldsymbol{w}, \boldsymbol{x}))
$$

- Class A if $f(\boldsymbol{x})$ positive
- Class B if $f(\boldsymbol{x})$ negative
- e.g. $\mathrm{h}(\boldsymbol{x})=\operatorname{sgn}(f(\boldsymbol{x}))$ is the decision function

$$
f(\boldsymbol{x})=\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}+b=b+\|\boldsymbol{w}\|\|\boldsymbol{x}\| \cos (\angle(\boldsymbol{w}, \boldsymbol{x}))
$$

- Linear discriminants represent hyperplanes in feature space
- Classification using a Perceptron
- Represents a (hyper-) plane: $\sum_{i=1}^{n} w_{i} \cdot x_{i}=\theta$
- Left of hyperplane: class 0
- Right of hyperplane: class 1
- Training a Perceptron
- Learn the "correct" weights to distinguish the two classes
- Iterative adaption of weights w_{i}
- Rotation of the hyperplane defined by \boldsymbol{w} and θ in small direction of x if x is not yet on the correct side of the hyperplane.
- Rosenblatt (1959) introduced a simple learning algorithm for linear discriminants ("perceptrons"):
- Given a linearly separable training set S

$$
\begin{aligned}
& w_{0} \leftarrow \mathbf{0} ; b_{0} \leftarrow \mathbf{0} ; k \leftarrow \mathbf{0} \\
& \mathrm{R} \leftarrow \max _{1 \leq j \leq m}\left\|\boldsymbol{x}_{j}\right\| \\
& \text { repeat } \\
& \quad \text { for } j=1 \text { to } m \\
& \quad \text { if } y_{j} \cdot\left(\boldsymbol{w}_{k}^{T} x_{j}+b\right) \leq 0 \text { then } \\
& \qquad \begin{array}{l}
\boldsymbol{w}_{k+1} \leftarrow \boldsymbol{w}_{k}+y_{j} \boldsymbol{x}_{j} \\
b_{k+1} \leftarrow b_{k}+y_{j} R^{2} \\
k \leftarrow k+1
\end{array} \quad \begin{array}{l}
\text { end if }
\end{array} \\
& \text { end for } \\
& \text { until no mistakes made within the for loop } \\
& \text { return (} \boldsymbol{w}_{k}, b_{k} \text {) }
\end{aligned}
$$

- Algorithm is
- On-line (pattern by pattern approach)
- Mistake driven (updates only in case of wrong classification)
- Algorithm converges guaranteed if a hyperplane exists which classifies all training data correctly (data is linearly separable)
- Learning rule:

$$
\boldsymbol{I F} y_{i} \cdot\left(\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}_{j}+b\right)<0 \quad \text { THEN }\left\{\begin{array}{l}
\boldsymbol{w}(t+1)=\boldsymbol{w}(t)+y_{i} \cdot \boldsymbol{x}_{j} \\
b(t+1)=b(t)+y_{j} \cdot R^{2}
\end{array}\right.
$$

- One observation:
- Weight vector (if initialized properly) is simply a weighted sum of input vectors (b is even more trivial).
- Weight vector \boldsymbol{w} is a weighted sum of input $\boldsymbol{x}_{\boldsymbol{j}}$

$$
\boldsymbol{w}=\sum_{j=1}^{n} \alpha_{j} \cdot y_{j} \cdot \boldsymbol{x}_{j}
$$

Where α_{j} represents how much $\boldsymbol{x}_{\boldsymbol{j}}$ contributes to \boldsymbol{w}

- Large $\alpha_{j}: \boldsymbol{x}_{\boldsymbol{j}}$ is difficult to classify - higher information content
- Small or zero α_{j} : $\boldsymbol{x}_{\boldsymbol{j}}$ easy to classify - smaller information content
\rightarrow This representation with α_{j} 's - known as dual representation
- We can now represent the discriminant function as

$$
f(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+b=\left(\sum_{j=1}^{n} \alpha_{j} \cdot y_{j} \cdot x_{j}^{T} \boldsymbol{x}\right)+b
$$

Dual Representation

- Dual Representation of Learning Algorithm:
- Given a training set S

$$
\begin{aligned}
& \boldsymbol{\alpha} \leftarrow \mathbf{0} ; b \leftarrow \mathbf{0} \\
& \mathrm{R} \leftarrow \max _{1 \leq i \leq m}\left\|\boldsymbol{x}_{i}\right\| \\
& \text { repeat } \\
& \quad \text { for } i=1 \text { to } m \\
& \quad \text { if } y_{j} \cdot\left(\sum_{j=1}^{m} \alpha_{j} y_{j} \boldsymbol{x}_{j}^{T} \boldsymbol{x}_{i}+b\right) \leq 0 \text { then } \\
& \qquad \begin{array}{l}
\quad \boldsymbol{\alpha}_{i} \leftarrow \boldsymbol{\alpha}_{i}+1 \\
\quad b \leftarrow b+y_{i} R^{2}
\end{array} \\
& \quad \text { end if } \\
& \text { end for } \\
& \text { until no mistakes made within the for loop } \\
& \text { return }(\boldsymbol{\alpha}, b)
\end{aligned}
$$

- Both α_{j} and b can be updated iteratively
- Learning Rule at iteration t :

$$
\text { IF } \quad y_{j} \cdot\left(\sum_{j=1}^{n} \alpha_{j} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+b\right)<0 \quad \text { THEN }\left\{\begin{array}{c}
\alpha_{i}(t+1)=\alpha_{i}+1 \\
b(t+1)=b(t)+y_{i} \cdot R^{2}
\end{array}\right.
$$

where $R=\max _{j}\left\|\boldsymbol{x}_{j}\right\|$

- Harder to learn examples having larger alpha
- The information about training examples enters algorithm only through the inner products (which we could pre-compute)
- So far, we have seen training via computation of inner products
\rightarrow Indicating which side of the linear decision boundary \boldsymbol{x} falls into
- Say, it is hard to find a linear boundary in the original space

Original space

Projected space

- Solution: project to another space, find the linear boundary in the projected space, classify in the projected space

Kernel Methods and Support Vector Machines

- A kernel function is a function K, such that for all $(x, y) \in X$

$$
K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\Phi\left(\boldsymbol{x}_{1}\right)^{T} \Phi\left(\boldsymbol{x}_{2}\right)
$$

where Φ is a mapping from X to an (inner product) feature space F.

- It is not necessary to transform the original data into the projected space before learning linear SVM
- The kernel K allows us to compute the inner product of two points x and y in the projected space without even entering that space
- The discriminant function in the projected space

$$
f(\boldsymbol{x})=\left(\sum_{j=1}^{n} \alpha_{j} \cdot y_{j} \cdot \Phi(\boldsymbol{x})^{T} \Phi\left(\boldsymbol{x}_{j}\right)\right)+b
$$

- Or with the kernel function K

$$
f(\boldsymbol{x})=\left(\sum_{j=1}^{n} \alpha_{j} \cdot y_{j} \cdot K\left(\boldsymbol{x}, \boldsymbol{x}_{j}\right)\right)+b
$$

All data necessary for

- the decision function $h(\boldsymbol{x})$
- the training of the coefficients
can be pre-computed using a Gram matrix K

$$
K=\left(\begin{array}{cccc}
K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right) & K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & \cdots & K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{m}\right) \\
K\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{1}\right) & K\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right) & \cdots & K\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
K\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{1}\right) & K\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{2}\right) & \cdots & K\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{m}\right)
\end{array}\right)
$$

- Let X be a non empty set. A function is a valid kernel in X if for all n and all $x_{1}, \ldots, x_{n} \in X$ it produces a Gram matrix K, which is:
- Symmetric

$$
K=K^{T}
$$

- Positive semi-definite

$$
\forall \alpha: \boldsymbol{\alpha}^{T} K \boldsymbol{\alpha} \geq 0
$$

- Eigenvectors of the matrix correspond to the input vectors

Moreover,

- Every positive definite \& symmetric matrix is a Gram matrix
- A simple kernel is

$$
K(x, y)=\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

- And the corresponding projected space:

$$
\left(x_{1}, x_{2}\right) \mapsto \Phi(\boldsymbol{x})=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

- Since

$$
\begin{aligned}
& \langle x, y\rangle^{2}=\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle^{2} \\
& =\left\langle\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right),\left(y_{1}^{2}, y_{2}^{2}, \sqrt{2} y_{1} y_{2}\right)\right\rangle \\
& =x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}
\end{aligned}
$$

- A few less simple kernels are

$$
K(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}^{T} \boldsymbol{y}\right)^{d}
$$

- And the corresponding projected spaces are of dimension

$$
\binom{n+d-1}{d}
$$

- But computing the inner products in the projected space can quickly become expensive
- Polynomial kernel of degree d

$$
K(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}^{T} \boldsymbol{y}+c\right)^{d}
$$

- Gaussian kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})=e^{-\frac{\|x-y\|^{2}}{2 \sigma^{2}}}
$$

- Also known as radial basis function (RBF) kernel

- Note that we do not need to know the projection Φ.
- It is sufficient to prove that $K(\cdot)$ is a Kernel.

A few notes:

- Kernels are modular and closed: we can compose new Kernels based on existing ones
- Kernels can be defined over non numerical objects:
- Text: e.g. string matching kernel
- Images, trees, graphs...
- A good kernel is crucial
- Gram Matrix diagonal: classification easy and useless
- Finding the hyperplane (in any space) still leaves lots of room for variations
- We can define "margins" of individual training examples:

$$
\gamma_{i}=y_{i}\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)
$$

appropriately normalized this is a "geometrical" margin

- The margin of a hyperplane (with respect to a training set): $\min _{i=1 \ldots n} \gamma_{i}$
- And a maximal margin of all training examples indicates the maximum margin over all hyperplanes

- The original objective function

$$
y_{i} \cdot\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right) \geq 0
$$

- Is reformulated slightly:

$$
y_{i} \cdot\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right) \geq 1
$$

- The decision line is still defined by

$$
\boldsymbol{w}^{T} \boldsymbol{x}+\mathrm{b}=0
$$

- And in addition the upper and lower margins are defined by

$$
\boldsymbol{w}^{T} \boldsymbol{x}+\mathrm{b}= \pm 1
$$

- The distance between those two hyperplanes is $\frac{2}{\|w\|}$
- Finding the maximum margin now turns into a minimization problem:
- Minimize (in w, b)
$\|w\|$
- subject to (for any $j=1, \ldots, n$)

$$
y_{i}\left(\boldsymbol{w}^{T} \boldsymbol{x}-b\right) \geq 1
$$

Solution sketch:

- Solutions depend on $\|\boldsymbol{w}\|$, the norm of \boldsymbol{w} which involves a square root
- Convert into a quadratic form by substituting $\|\boldsymbol{w}\|$ with $\frac{1}{2}\|w\|^{2}$ without changing the solution
- Using Lagrange multipliers this turns into a standard quadratic programming problem

Margin of Error and Variations

- What can we do if no linear separating hyperplane exists?
- Solution: allow minor violations - also known as soft margins
\rightarrow In contrast, avoiding any misclassifications \equiv hard margins

Hard margins

Soft margins

- How do we implement soft margins? \rightarrow via slack variables ε_{j}
- Introducing the slack variables to the minimization constraint

$$
\forall j=1, \ldots, n: \quad y_{j} \cdot\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+b\right) \geq 1-\varepsilon_{j}
$$

- Misclassifications are allowed if slack $\varepsilon_{j}>1$ is allowed
- The minimization problem is solved using Lagrange multipliers

$$
\arg \min \frac{1}{2}\|w\|^{2}+C \sum_{j} \varepsilon_{j}
$$

- Subject to: $\quad y_{j} \cdot\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+b\right) \geq 1-\varepsilon_{j}$
- The regularization parameter $C>0$ controls the "hardness" of the margins (large $C \rightarrow$ hard margins, small $C \rightarrow$ soft margins)

How do we separate more than two classes?

- Transform the problem into a set of binary classification problems
- One class vs. all other classes
- One class vs. another class, for all possible class pairs
- The class with the farthest distance from the hyperplane wins
- The key idea: change the optimization

$$
\arg \min \frac{1}{2}\|w\|^{2}
$$

- Subject to:

$$
y_{j}-\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+b\right) \leq \varepsilon \quad \text { for } 1 \leq j \leq n
$$

- This require the prediction error to be within a margin ε
- We can introduce slack variables to tolerate larger errors

- Support Vector Machine

- Classifier as weighted sum over inner products of training pattern (or only support vectors) and the new pattern.
- Training analog
- Kernel-Induced feature space
- Transformation into higher-dimensional space (where we will hopefully be able to find a linear separation plane).
- Representation of solution through few support vectors $(\alpha>0)$.
- Maximum Margin Classifier
- Reduction of Capacity (Bias) via maximization of margin (and not via reduction of degrees of freedom).
- Efficient parameter estimation.
- Relaxations
- Soft Margin for non separable problems.

Practical Examples with KNIME Analytics Platform

- Workflow training an SVM model to classify the iris data set
- The configuration window of the SVM Learner node
- Allows a selection of a kernel and the associated parameters
- Overlapping penalty controls the margin hardness

Thank you

