
Support

Vector

Machines

(SVM)

Summary of this lesson

2

“The key to artificial intelligence has always been the representation”

-Jeff Hawkins

What are Support Vector Machines?

Guide to Intelligent Data Science Second Edition, 2020

*This lesson refers to chapter 9 of the GIDS book

Content of this lesson

3

Support Vector Machines (more generally – Kernel Machines)

− Motivation

− Linear Classifiers
− Rosenblatt Learning Rule

− Kernel Methods and Support Vector Machines
− Dual Representation

− Maximal Margins

− Kernels

− Margin of Error and Variations
− Soft and Hard Margin Classifiers

− Multi-Class SVM

− Support Vector Regression

Guide to Intelligent Data Science Second Edition, 2020

− Datasets used : iris dataset

− Example Workflows:
− „SVM on iris dataset “ https://kni.me/w/DTfbNITUngKQVF8v

− Normalization

− SVM

Datasets

4Guide to Intelligent Data Science Second Edition, 2020

https://kni.me/w/DTfbNITUngKQVF8v

Motivation

5Guide to Intelligent Data Science Second Edition, 2020

Motivation

6

− Main idea of Kernel Methods

− Embed data into suitable vector space

− Find linear classifier (or other linear pattern of interest) in new space

− Needed: a Mapping

Φ: 𝑥 ∈ 𝑋 → Φ 𝑥 ∈ 𝐹

− Key Assumptions:

− Information about relative position is often all that is needed by learning methods

− The inner products between points in the projected space can be computed in the

original space using special functions (kernels).

Guide to Intelligent Data Science Second Edition, 2020

Linear Classifiers

7Guide to Intelligent Data Science Second Edition, 2020

Linear Discriminant

8

− Simple linear, binary classifier:

𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏 =

𝑖=1

𝑛

𝑥𝑖𝑤𝑖 + 𝑏 = 𝑏 + 𝒘 𝒙 cos(∠ 𝒘, 𝒙)

− Class A if 𝑓 𝒙 positive

− Class B if 𝑓 𝒙 negative

− e.g. h 𝒙 = 𝑠𝑔𝑛(𝑓 𝒙) is the decision function

Guide to Intelligent Data Science Second Edition, 2020

Linear Discriminant Function

9

− Linear discriminants represent hyperplanes in feature space

Guide to Intelligent Data Science Second Edition, 2020

𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 𝑏 + 𝒘 𝒙 cos(∠ 𝒘, 𝒙)

cos(∠ 𝒘, 𝒙)>0
cos ∠ 𝒘, 𝒙 <0

𝒘

Training a “Perceptron”

10

− Classification using a Perceptron

− Represents a (hyper-) plane: σ𝑖=1
𝑛 𝑤𝑖 ∙ 𝑥𝑖 = 𝜃

− Left of hyperplane: class 0

− Right of hyperplane: class 1

− Training a Perceptron

− Learn the “correct” weights to distinguish the two classes

− Iterative adaption of weights 𝑤𝑖

− Rotation of the hyperplane defined by 𝒘 and 𝜃 in small direction of 𝒙 if 𝒙 is not

yet on the correct side of the hyperplane.

Guide to Intelligent Data Science Second Edition, 2020

Primal Perceptron

11

− Rosenblatt (1959) introduced a simple learning algorithm for linear

discriminants ("perceptrons"):

− Given a linearly separable training set S

Guide to Intelligent Data Science Second Edition, 2020

𝑤0 ← 𝟎; 𝑏0 ← 𝟎; 𝑘 ← 𝟎

R ← max
1≤𝑗≤𝑚

𝒙𝑗

repeat

for 𝑗 = 1 to 𝑚

if 𝑦𝑗 ∙ (𝒘𝑘
𝑻𝑥𝑗 + 𝑏) ≤ 0 then

𝒘𝑘+1 ← 𝒘𝑘 + 𝑦𝑗𝒙𝑗
𝑏𝑘+1 ← 𝑏𝑘 + 𝑦𝑗𝑅

2

𝑘 ← 𝑘 + 1
end if

end for

until no mistakes made within the for loop

return (𝒘𝑘 , 𝑏𝑘)

Rosenblatt Algorithm

12

− Algorithm is

− On-line (pattern by pattern approach)

− Mistake driven (updates only in case of wrong classification)

− Algorithm converges guaranteed if a hyperplane exists which classifies

all training data correctly (data is linearly separable)

− Learning rule:

𝑰𝑭 𝑦𝑖 ∙ 𝒘𝑻𝒙𝑗 + 𝑏 < 0 𝑻𝑯𝑬𝑵 ൝
𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝑦𝑖 ∙ 𝒙𝑗

𝑏 𝑡 + 1 = 𝑏 𝑡 + 𝑦𝑗 ∙ 𝑅
2

− One observation:

− Weight vector (if initialized properly) is simply a weighted sum of input vectors

(b is even more trivial).

Guide to Intelligent Data Science Second Edition, 2020

Dual Representation (of discriminant function)

13

− Weight vector 𝒘 is a weighted sum of input 𝒙𝒋

Where 𝛼𝑗 represents how much 𝒙𝒋 contributes to 𝒘

− Large 𝛼𝑗: 𝒙𝒋 is difficult to classify – higher information content

− Small or zero 𝛼𝑗: 𝒙𝒋 easy to classify – smaller information content

→ This representation with 𝛼𝑗 ’s – known as dual representation

− We can now represent the discriminant function as

Guide to Intelligent Data Science Second Edition, 2020

𝒘 =
𝑗=1

𝑛

𝛼𝑗 ∙ 𝑦𝑗 ∙ 𝒙𝑗

𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏 =
𝑗=1

𝑛

𝛼𝑗 ∙ 𝑦𝑗 ∙ 𝒙𝑗
𝑻𝒙 + 𝑏

Dual Representation

14

− Dual Representation of Learning Algorithm:

− Given a training set S

Guide to Intelligent Data Science Second Edition, 2020

𝜶 ← 𝟎; 𝑏 ← 𝟎
R ← max

1≤𝑖≤𝑚
𝒙𝑖

repeat

for 𝑖 = 1 to 𝑚

if 𝑦𝑗 ∙ σ𝑗=1
𝑚 𝛼𝑗𝑦𝑗𝒙𝑗

𝑻𝒙𝑖 + 𝑏 ≤ 0 then

𝜶𝑖 ← 𝜶𝑖 + 1
𝑏 ← 𝑏 + 𝑦𝑖𝑅

2

end if

end for

until no mistakes made within the for loop

return (𝜶, 𝑏)

Dual Representation

15

− Both 𝛼𝑗 and 𝑏 can be updated iteratively

− Learning Rule at iteration 𝑡:

𝑰𝑭 𝑦𝑗 ∙

𝑗=1

𝑛

𝛼𝑗𝑦𝑗𝒙𝑖
𝑻𝒙𝑗 + 𝑏 < 0 𝑻𝑯𝑬𝑵 ቊ

𝛼𝑖 𝑡 + 1 = 𝛼𝑖 + 1

𝑏 𝑡 + 1 = 𝑏 𝑡 + 𝑦𝑖 ∙ 𝑅
2

where 𝑅 = max
𝑗

𝒙𝑗

− Harder to learn examples having larger alpha

− The information about training examples enters algorithm only through

the inner products (which we could pre-compute)

Guide to Intelligent Data Science Second Edition, 2020

− So far, we have seen training via computation of inner products

→ Indicating which side of the linear decision boundary 𝒙 falls into

− Say, it is hard to find a linear boundary in the original space

− Solution: project to another space, find the linear boundary in the

projected space, classify in the projected space

Projection to Other Spaces

16Guide to Intelligent Data Science Second Edition, 2020

Original space Projected space

Linear boundary

Kernel Methods and

Support Vector

Machines

17Guide to Intelligent Data Science Second Edition, 2020

Kernel Functions

18

− A kernel function is a function 𝐾, such that for all (𝑥, 𝑦) ∈ 𝑋

𝐾 𝒙1, 𝒙2 = Φ(𝒙1)
𝑇Φ(𝒙2)

where Φ is a mapping from 𝑋 to an (inner product) feature space 𝐹.

− It is not necessary to transform the original data into the projected space

before learning linear SVM

− The kernel 𝐾 allows us to compute the inner product of two points 𝑥 and

𝑦 in the projected space without even entering that space

Guide to Intelligent Data Science Second Edition, 2020

…in Kernel Land…

19

− The discriminant function in the projected space

𝑓 𝒙 =
𝑗=1

𝑛

𝛼𝑗 ∙ 𝑦𝑗 ∙ Φ(𝒙)
𝑇Φ(𝒙𝑗) + 𝑏

− Or with the kernel function 𝐾

𝑓 𝒙 =
𝑗=1

𝑛

𝛼𝑗 ∙ 𝑦𝑗 ∙ 𝐾(𝒙, 𝒙𝑗) + 𝑏

Guide to Intelligent Data Science Second Edition, 2020

Gram Matrix

20

All data necessary for

− the decision function ℎ(𝒙)

− the training of the coefficients

can be pre-computed using a Gram matrix 𝐾

𝐾 =

𝐾(𝒙1, 𝒙1) 𝐾(𝒙1, 𝒙2)
𝐾(𝒙2, 𝒙1) 𝐾(𝒙2, 𝒙2)

⋯ 𝐾(𝒙1, 𝒙𝑚)
⋯ 𝐾(𝒙2, 𝒙𝑚)

⋮ ⋮
𝐾(𝒙𝑚, 𝒙1) 𝐾(𝒙𝑚, 𝒙2)

⋱ ⋮
⋯ 𝐾(𝒙𝑚, 𝒙𝑚)

Guide to Intelligent Data Science Second Edition, 2020

Rules for a Gramm Matrix

21

− Let 𝑋 be a non empty set. A function is a valid kernel in 𝑋 if for all 𝑛 and

all 𝑥1, … , 𝑥𝑛 ∈ 𝑋 it produces a Gram matrix 𝐾, which is:

− Symmetric

𝐾 = 𝐾𝑇

− Positive semi-definite

∀𝜶 ∶ 𝜶𝑻𝐾𝜶 ≥ 0

− Eigenvectors of the matrix correspond to the input vectors

Moreover,

− Every positive definite & symmetric matrix is a Gram matrix

Guide to Intelligent Data Science Second Edition, 2020

Kernels

22

− A simple kernel is

𝐾 𝑥, 𝑦 = 𝑥1𝑦1 + 𝑥2𝑦2
2

− And the corresponding projected space:

𝑥1, 𝑥2 ↦ Φ 𝒙 = (𝑥1
2, 𝑥2

2, 2𝑥1𝑥2)

− Since

𝑥, 𝑦 2 = 𝑥1, 𝑥2 , 𝑦1, 𝑦2
2

= 𝑥1
2, 𝑥2

2, 2𝑥1𝑥2 , 𝑦1
2, 𝑦2

2, 2𝑦1𝑦2

= 𝑥1
2𝑦1

2 + 𝑥2
2𝑦2

2 + 2𝑥1𝑥2𝑦1𝑦2

= 𝑥1𝑦1 + 𝑥2𝑦2
2

Guide to Intelligent Data Science Second Edition, 2020

Kernels

23

− A few less simple kernels are

𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚 𝑑

− And the corresponding projected spaces are of dimension

𝑛 + 𝑑 − 1

𝑑

− But computing the inner products in the projected space can quickly

become expensive

Guide to Intelligent Data Science Second Edition, 2020

More Kernels

24

− Polynomial kernel of degree 𝑑

Guide to Intelligent Data Science Second Edition, 2020

𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚 + 𝑐 𝑑

More Kernels

25

− Gaussian kernel

− Also known as radial basis function (RBF) kernel

Guide to Intelligent Data Science Second Edition, 2020

𝐾 𝒙, 𝒚 = 𝑒
−

𝒙−𝒚 2

2𝜎2

Kernels

26

− Note that we do not need to know the projection Φ.

− It is sufficient to prove that 𝐾(∙) is a Kernel.

A few notes:

− Kernels are modular and closed: we can compose new Kernels based

on existing ones

− Kernels can be defined over non numerical objects:

− Text: e.g. string matching kernel

− Images, trees, graphs…

− A good kernel is crucial

− Gram Matrix diagonal: classification easy and useless

Guide to Intelligent Data Science Second Edition, 2020

Finding Linear Discriminants

27

− Finding the hyperplane (in any space) still leaves lots of room for

variations

− We can define “margins” of individual training examples:

𝛾𝑖 = 𝑦𝑖 𝒘
𝑇𝒙 + 𝑏

appropriately normalized this is a “geometrical” margin

− The margin of a hyperplane (with respect to a training set): min
𝑖=1…𝑛

𝛾𝑖

− And a maximal margin of all training examples indicates the maximum

margin over all hyperplanes

Guide to Intelligent Data Science Second Edition, 2020

(maximum) Margin of a Hyperplane

28Guide to Intelligent Data Science Second Edition, 2020

Finding Linear Discriminants

29

− The original objective function

𝑦𝑖 ∙ 𝒘𝑇𝒙 + 𝑏 ≥ 0

− Is reformulated slightly:

𝑦𝑖 ∙ 𝒘𝑇𝒙 + 𝑏 ≥ 1

− The decision line is still defined by

𝒘𝑇𝒙 + b = 0

− And in addition the upper and lower margins are defined by

𝒘𝑇𝒙 + b = ±1

− The distance between those two hyperplanes is
2

𝒘

Guide to Intelligent Data Science Second Edition, 2020

Finding Linear Discriminants

30

− Finding the maximum margin now turns into a minimization problem:

− Minimize (in 𝒘, 𝑏)

𝒘

− subject to (for any 𝑗 = 1,… , 𝑛)

𝑦𝑖(𝒘
𝑇𝒙 − 𝑏) ≥ 1

Solution sketch:

− Solutions depend on 𝒘 , the norm of 𝒘 which involves a square root

− Convert into a quadratic form by substituting 𝒘 with
1

2
𝒘 2 without

changing the solution

− Using Lagrange multipliers this turns into a standard quadratic

programming problem

Guide to Intelligent Data Science Second Edition, 2020

Margin of Error and

Variations

31Guide to Intelligent Data Science Second Edition, 2020

Soft and Hard Margin Classifiers

32

− What can we do if no linear separating hyperplane exists?

− Solution: allow minor violations – also known as soft margins

→ In contrast, avoiding any misclassifications ≡ hard margins

Guide to Intelligent Data Science Second Edition, 2020

Hard margins Soft margins

Soft and Hard Margin Classifiers

33

− How do we implement soft margins? → via slack variables 𝜀𝑗

− Introducing the slack variables to the minimization constraint

∀𝑗 = 1,… , 𝑛: 𝑦𝑗 ∙ 𝒘𝑇𝒙𝑗 + 𝑏 ≥ 1 − 𝜀𝑗

− Misclassifications are allowed if slack 𝜀𝑗 > 1 is allowed

− The minimization problem is solved using Lagrange multipliers

argmin
1

2
𝒘 2 + 𝐶

𝑗

𝜀𝑗

− Subject to: 𝑦𝑗 ∙ 𝒘𝑇𝒙𝑗 + 𝑏 ≥ 1 − 𝜀𝑗

− The regularization parameter 𝐶 > 0 controls the “hardness” of the

margins (large 𝐶 → hard margins, small 𝐶 → soft margins)

Guide to Intelligent Data Science Second Edition, 2020

Multi-Class SVM

34

How do we separate more than two classes?

− Transform the problem into a set of binary classification problems

− One class vs. all other classes

− One class vs. another class, for all possible class pairs

− The class with the farthest distance from the hyperplane wins

Guide to Intelligent Data Science Second Edition, 2020

Support Vector Regression

35

− The key idea: change the optimization

argmin
1

2
𝑤 2

− Subject to:

𝑦𝑗 − 𝒘𝑇𝒙𝑗 + 𝑏 ≤ 𝜀 for 1 ≤ 𝑗 ≤ 𝑛

− This require the prediction error to be within a margin 𝜀

− We can introduce slack variables to tolerate larger errors

Guide to Intelligent Data Science Second Edition, 2020

Support Vector Machines

36

− Support Vector Machine
− Classifier as weighted sum over inner products of training pattern (or only support vectors) and the

new pattern.

− Training analog

− Kernel-Induced feature space
− Transformation into higher-dimensional space (where we will hopefully be able to find a linear

separation plane).

− Representation of solution through few support vectors (𝛼 > 0).

− Maximum Margin Classifier
− Reduction of Capacity (Bias) via maximization of margin (and not via reduction of degrees of

freedom).

− Efficient parameter estimation.

− Relaxations
− Soft Margin for non separable problems.

Guide to Intelligent Data Science Second Edition, 2020

Practical Examples with

KNIME Analytics Platform

37Guide to Intelligent Data Science Second Edition, 2020

SVM on the Iris Data

38

− Workflow training an SVM model to classify the iris data set

Guide to Intelligent Data Science Second Edition, 2020

SVM on the Iris Data

39

− The configuration window of the SVM

Learner node

− Allows a selection of a kernel and the

associated parameters

− Overlapping penalty controls the margin

hardness

Guide to Intelligent Data Science Second Edition, 2020

Guide to Intelligent Data Science Second Edition, 2020

Thank you
For any questions please contact: education@knime.com

40

	Slide 1: Support Vector Machines (SVM)
	Slide 2: Summary of this lesson
	Slide 3: Content of this lesson
	Slide 4: Datasets
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Linear Classifiers
	Slide 8: Linear Discriminant
	Slide 9: Linear Discriminant Function
	Slide 10: Training a “Perceptron”
	Slide 11: Primal Perceptron
	Slide 12: Rosenblatt Algorithm
	Slide 13: Dual Representation (of discriminant function)
	Slide 14: Dual Representation
	Slide 15: Dual Representation
	Slide 16: Projection to Other Spaces
	Slide 17: Kernel Methods and Support Vector Machines
	Slide 18: Kernel Functions
	Slide 19: …in Kernel Land…
	Slide 20: Gram Matrix
	Slide 21: Rules for a Gramm Matrix
	Slide 22: Kernels
	Slide 23: Kernels
	Slide 24: More Kernels
	Slide 25: More Kernels
	Slide 26: Kernels
	Slide 27: Finding Linear Discriminants
	Slide 28: (maximum) Margin of a Hyperplane
	Slide 29: Finding Linear Discriminants
	Slide 30: Finding Linear Discriminants
	Slide 31: Margin of Error and Variations
	Slide 32: Soft and Hard Margin Classifiers
	Slide 33: Soft and Hard Margin Classifiers
	Slide 34: Multi-Class SVM
	Slide 35: Support Vector Regression
	Slide 36: Support Vector Machines
	Slide 37: Practical Examples with KNIME Analytics Platform
	Slide 38: SVM on the Iris Data
	Slide 39: SVM on the Iris Data
	Slide 40: Thank you

