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Summary of this lesson
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“The key to artificial intelligence has always been the representation”

-Jeff Hawkins

What are Support Vector Machines?
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*This lesson refers to chapter 9 of the GIDS book



Content of this lesson
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Support Vector Machines (more generally – Kernel Machines)

− Motivation

− Linear Classifiers
− Rosenblatt Learning Rule

− Kernel Methods and Support Vector Machines
− Dual Representation

− Maximal Margins

− Kernels

− Margin of Error and Variations
− Soft and Hard Margin Classifiers

− Multi-Class SVM 

− Support Vector Regression
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− Datasets used : iris dataset

− Example Workflows: 
− „SVM on iris dataset “ https://kni.me/w/DTfbNITUngKQVF8v

− Normalization

− SVM

Datasets
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https://kni.me/w/DTfbNITUngKQVF8v


Motivation
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Motivation
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− Main idea of Kernel Methods

− Embed data into suitable vector space

− Find linear classifier (or other linear pattern of interest) in new space

− Needed: a Mapping

Φ: 𝑥 ∈ 𝑋 → Φ 𝑥 ∈ 𝐹

− Key Assumptions:

− Information about relative position is often all that is needed by learning methods

− The inner products between points in the projected space can be computed in the 

original space using special functions (kernels).
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Linear Classifiers
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Linear Discriminant
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− Simple linear, binary classifier:

𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏 =

𝑖=1

𝑛

𝑥𝑖𝑤𝑖 + 𝑏 = 𝑏 + 𝒘 𝒙 cos(∠ 𝒘, 𝒙 )

− Class A if 𝑓 𝒙 positive

− Class B if 𝑓 𝒙 negative

− e.g. h 𝒙 = 𝑠𝑔𝑛(𝑓 𝒙 ) is the decision function
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Linear Discriminant Function
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− Linear discriminants represent hyperplanes in feature space
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𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 𝑏 + 𝒘 𝒙 cos(∠ 𝒘, 𝒙 )

cos(∠ 𝒘, 𝒙 )>0
cos ∠ 𝒘, 𝒙 <0

𝒘



Training a “Perceptron”
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− Classification using a Perceptron

− Represents a (hyper-) plane: σ𝑖=1
𝑛 𝑤𝑖 ∙ 𝑥𝑖 = 𝜃

− Left of hyperplane: class 0

− Right of hyperplane: class 1

− Training a Perceptron

− Learn the “correct” weights to distinguish the two classes

− Iterative adaption of weights 𝑤𝑖

− Rotation of the hyperplane defined by 𝒘 and 𝜃 in small direction of 𝒙 if 𝒙 is not 

yet on the correct side of the hyperplane.

Guide to Intelligent Data Science Second Edition, 2020



Primal Perceptron
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− Rosenblatt (1959) introduced a simple learning algorithm for linear 

discriminants ("perceptrons"):

− Given a linearly separable training set S
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𝑤0 ← 𝟎; 𝑏0 ← 𝟎; 𝑘 ← 𝟎

R ← max
1≤𝑗≤𝑚

𝒙𝑗

repeat

for 𝑗 = 1 to 𝑚

if 𝑦𝑗 ∙ (𝒘𝑘
𝑻𝑥𝑗 + 𝑏) ≤ 0 then

𝒘𝑘+1 ← 𝒘𝑘 + 𝑦𝑗𝒙𝑗
𝑏𝑘+1 ← 𝑏𝑘 + 𝑦𝑗𝑅

2

𝑘 ← 𝑘 + 1
end if

end for

until no mistakes made within the for loop

return (𝒘𝑘 , 𝑏𝑘)



Rosenblatt Algorithm
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− Algorithm is

− On-line (pattern by pattern approach)

− Mistake driven (updates only in case of wrong classification)

− Algorithm converges guaranteed if a hyperplane exists which classifies 

all training data correctly (data is linearly separable)

− Learning rule:

𝑰𝑭 𝑦𝑖 ∙ 𝒘𝑻𝒙𝑗 + 𝑏 < 0 𝑻𝑯𝑬𝑵 ൝
𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝑦𝑖 ∙ 𝒙𝑗

𝑏 𝑡 + 1 = 𝑏 𝑡 + 𝑦𝑗 ∙ 𝑅
2

− One observation:

− Weight vector (if initialized properly) is simply a weighted sum of input vectors 

(b is even more trivial).

Guide to Intelligent Data Science Second Edition, 2020



Dual Representation (of discriminant function)
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− Weight vector 𝒘 is a weighted sum of input 𝒙𝒋

Where 𝛼𝑗 represents how much 𝒙𝒋 contributes to 𝒘

− Large 𝛼𝑗: 𝒙𝒋 is difficult to classify – higher information content

− Small or zero 𝛼𝑗: 𝒙𝒋 easy to classify – smaller information content

→ This representation with 𝛼𝑗 ’s – known as dual representation

− We can now represent the discriminant function as
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𝒘 =
𝑗=1

𝑛

𝛼𝑗 ∙ 𝑦𝑗 ∙ 𝒙𝑗

𝑓 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 
𝑗=1

𝑛

𝛼𝑗 ∙ 𝑦𝑗 ∙ 𝒙𝑗
𝑻𝒙 + 𝑏



Dual Representation
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− Dual Representation of Learning Algorithm:

− Given a training set S
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𝜶 ← 𝟎; 𝑏 ← 𝟎
R ← max

1≤𝑖≤𝑚
𝒙𝑖

repeat

for 𝑖 = 1 to 𝑚

if 𝑦𝑗 ∙ σ𝑗=1
𝑚 𝛼𝑗𝑦𝑗𝒙𝑗

𝑻𝒙𝑖 + 𝑏 ≤ 0 then

𝜶𝑖 ← 𝜶𝑖 + 1
𝑏 ← 𝑏 + 𝑦𝑖𝑅

2

end if

end for

until no mistakes made within the for loop

return (𝜶, 𝑏)



Dual Representation
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− Both 𝛼𝑗 and 𝑏 can be updated iteratively

− Learning Rule at iteration 𝑡:

𝑰𝑭 𝑦𝑗 ∙ 

𝑗=1

𝑛

𝛼𝑗𝑦𝑗𝒙𝑖
𝑻𝒙𝑗 + 𝑏 < 0 𝑻𝑯𝑬𝑵 ቊ

𝛼𝑖 𝑡 + 1 = 𝛼𝑖 + 1

𝑏 𝑡 + 1 = 𝑏 𝑡 + 𝑦𝑖 ∙ 𝑅
2

where 𝑅 = max
𝑗

𝒙𝑗

− Harder to learn examples having larger alpha

− The information about training examples enters algorithm only through 

the inner products (which we could pre-compute)
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− So far, we have seen training via computation of inner products

→ Indicating which side of the linear decision boundary 𝒙 falls into

− Say, it is hard to find a linear boundary in the original space

− Solution: project to another space, find the linear boundary in the 

projected space, classify in the projected space

Projection to Other Spaces
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Original space Projected space

Linear boundary



Kernel Methods and 

Support Vector 

Machines
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Kernel Functions
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− A kernel function is a function 𝐾, such that for all (𝑥, 𝑦) ∈ 𝑋

𝐾 𝒙1, 𝒙2 = Φ(𝒙1)
𝑇Φ(𝒙2)

where Φ is a mapping from 𝑋 to an (inner product) feature space 𝐹.

− It is not necessary to transform the original data into the projected space 

before learning linear SVM

− The kernel 𝐾 allows us to compute the inner product of two points 𝑥 and 

𝑦 in the projected space without even entering that space
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…in Kernel Land…
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− The discriminant function in the projected space

𝑓 𝒙 = 
𝑗=1

𝑛

𝛼𝑗 ∙ 𝑦𝑗 ∙ Φ(𝒙)
𝑇Φ(𝒙𝑗) + 𝑏

− Or with the kernel function 𝐾

𝑓 𝒙 = 
𝑗=1

𝑛

𝛼𝑗 ∙ 𝑦𝑗 ∙ 𝐾(𝒙, 𝒙𝑗) + 𝑏
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Gram Matrix
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All data necessary for 

− the decision function ℎ(𝒙)

− the training of the coefficients

can be pre-computed using a Gram matrix 𝐾

𝐾 =

𝐾(𝒙1, 𝒙1) 𝐾(𝒙1, 𝒙2)
𝐾(𝒙2, 𝒙1) 𝐾(𝒙2, 𝒙2)

⋯ 𝐾(𝒙1, 𝒙𝑚)
⋯ 𝐾(𝒙2, 𝒙𝑚)

⋮ ⋮
𝐾(𝒙𝑚, 𝒙1) 𝐾(𝒙𝑚, 𝒙2)

⋱ ⋮
⋯ 𝐾(𝒙𝑚, 𝒙𝑚)
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Rules for a Gramm Matrix
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− Let 𝑋 be a non empty set. A function is a valid kernel in 𝑋 if for all 𝑛 and 

all 𝑥1, … , 𝑥𝑛 ∈ 𝑋 it produces a Gram matrix 𝐾, which is:

− Symmetric

𝐾 = 𝐾𝑇

− Positive semi-definite

∀𝜶 ∶ 𝜶𝑻𝐾𝜶 ≥ 0

− Eigenvectors of the matrix correspond to the input vectors

Moreover,

− Every positive definite & symmetric matrix is a Gram matrix
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Kernels
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− A simple kernel is 

𝐾 𝑥, 𝑦 = 𝑥1𝑦1 + 𝑥2𝑦2
2

− And the corresponding projected space:

𝑥1, 𝑥2 ↦ Φ 𝒙 = (𝑥1
2, 𝑥2

2, 2𝑥1𝑥2)

− Since

𝑥, 𝑦 2 = 𝑥1, 𝑥2 , 𝑦1, 𝑦2
2

= 𝑥1
2, 𝑥2

2, 2𝑥1𝑥2 , 𝑦1
2, 𝑦2

2, 2𝑦1𝑦2

= 𝑥1
2𝑦1

2 + 𝑥2
2𝑦2

2 + 2𝑥1𝑥2𝑦1𝑦2

= 𝑥1𝑦1 + 𝑥2𝑦2
2
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Kernels
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− A few less simple kernels are 

𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚 𝑑

− And the corresponding projected spaces are of dimension 

𝑛 + 𝑑 − 1

𝑑

− But computing the inner products in the projected space can quickly 

become expensive
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More Kernels
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− Polynomial kernel of degree 𝑑
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𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚 + 𝑐 𝑑



More Kernels
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− Gaussian kernel

− Also known as radial basis function (RBF) kernel
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𝐾 𝒙, 𝒚 = 𝑒
−

𝒙−𝒚 2

2𝜎2



Kernels
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− Note that we do not need to know the projection Φ.

− It is sufficient to prove that 𝐾(∙) is a Kernel.

A few notes:

− Kernels are modular and closed: we can compose new Kernels based 

on existing ones

− Kernels can be defined over non numerical objects:

− Text: e.g. string matching kernel

− Images, trees, graphs…

− A good kernel is crucial

− Gram Matrix diagonal: classification easy and useless
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Finding Linear Discriminants
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− Finding the hyperplane (in any space) still leaves lots of room for 

variations

− We can define “margins” of individual training examples:

𝛾𝑖 = 𝑦𝑖 𝒘
𝑇𝒙 + 𝑏

appropriately normalized this is a “geometrical” margin

− The margin of a hyperplane (with respect to a training set): min
𝑖=1…𝑛

𝛾𝑖

− And a maximal margin of all training examples indicates the maximum 

margin over all hyperplanes
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(maximum) Margin of a Hyperplane
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Finding Linear Discriminants
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− The original objective function

𝑦𝑖 ∙ 𝒘𝑇𝒙 + 𝑏 ≥ 0

− Is reformulated slightly:

𝑦𝑖 ∙ 𝒘𝑇𝒙 + 𝑏 ≥ 1

− The decision line is still defined by

𝒘𝑇𝒙 + b = 0

− And in addition the upper and lower margins are defined by

𝒘𝑇𝒙 + b = ±1

− The distance between those two hyperplanes is  
2

𝒘
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Finding Linear Discriminants
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− Finding the maximum margin now turns into a minimization problem:

− Minimize (in 𝒘, 𝑏)

𝒘

− subject to (for any 𝑗 = 1,… , 𝑛)

𝑦𝑖(𝒘
𝑇𝒙 − 𝑏) ≥ 1

Solution sketch:

− Solutions depend on 𝒘 , the norm of 𝒘 which involves a square root

− Convert into a quadratic form by substituting 𝒘 with 
1

2
𝒘 2 without 

changing the solution

− Using Lagrange multipliers this turns into a standard quadratic 

programming problem
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Margin of Error and 

Variations
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Soft and Hard Margin Classifiers
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− What can we do if no linear separating hyperplane exists?

− Solution: allow minor violations – also known as soft margins

→ In contrast, avoiding any misclassifications ≡ hard margins

Guide to Intelligent Data Science Second Edition, 2020

Hard margins Soft margins



Soft and Hard Margin Classifiers
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− How do we implement soft margins? → via slack variables 𝜀𝑗

− Introducing the slack variables to the minimization constraint

∀𝑗 = 1,… , 𝑛: 𝑦𝑗 ∙ 𝒘𝑇𝒙𝑗 + 𝑏 ≥ 1 − 𝜀𝑗

− Misclassifications are allowed if slack 𝜀𝑗 > 1 is allowed

− The minimization problem is solved using Lagrange multipliers

argmin
1

2
𝒘 2 + 𝐶

𝑗

𝜀𝑗

− Subject to: 𝑦𝑗 ∙ 𝒘𝑇𝒙𝑗 + 𝑏 ≥ 1 − 𝜀𝑗

− The regularization parameter 𝐶 > 0 controls the “hardness” of the 

margins (large 𝐶 → hard margins, small 𝐶 → soft margins)
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Multi-Class SVM
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How do we separate more than two classes?

− Transform the problem into a set of binary classification problems

− One class vs. all other classes

− One class vs. another class, for all possible class pairs

− The class with the farthest distance from the hyperplane wins
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Support Vector Regression
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− The key idea: change the optimization

argmin
1

2
𝑤 2

− Subject to:

𝑦𝑗 − 𝒘𝑇𝒙𝑗 + 𝑏 ≤ 𝜀 for 1 ≤ 𝑗 ≤ 𝑛

− This require the prediction error to be within a margin 𝜀

− We can introduce slack variables to tolerate larger errors
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Support Vector Machines
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− Support Vector Machine
− Classifier as weighted sum over inner products of training pattern (or only support vectors) and the 

new pattern.

− Training analog

− Kernel-Induced feature space
− Transformation into higher-dimensional space (where we will hopefully be able to find a linear 

separation plane).

− Representation of solution through few support vectors (𝛼 > 0).

− Maximum Margin Classifier
− Reduction of Capacity (Bias) via maximization of margin (and not via reduction of degrees of 

freedom).

− Efficient parameter estimation.

− Relaxations
− Soft Margin for non separable problems.
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Practical Examples with 

KNIME Analytics Platform
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SVM on the Iris Data
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− Workflow training an SVM model to classify the iris data set
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SVM on the Iris Data
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− The configuration window of the SVM 

Learner node

− Allows a selection of a kernel and the 

associated parameters

− Overlapping penalty controls the margin 

hardness

Guide to Intelligent Data Science Second Edition, 2020
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Thank you
For any questions please contact: education@knime.com
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